
DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING
DEGREE PROGRAMME IN INFORMATION ENGINEERING

A MOBILE VECTOR GRAPHICS QUALITY
ANALYSIS TOOLKIT

Author
Sami Kyöstilä

Supervisor
Juha Röning

Accepted / 2008

Grade

Kyöstilä S. (2008) A Mobile Vector Graphics Quality AnalysisToolkit. Department
of Electrical and Information Engineering, University of Oulu, Oulu, Finland. Master’s
thesis, 100 p.

ABSTRACT

High resolution displays, fluid user interfaces and impressive graphics have be-
come essential features of modern mobile devices. This trendhas prompted a
move from traditional pixel-based graphics to more flexibleand efficient vector
graphics. The relationship between graphics content and performance, however,
is not always straightforward with vector graphics. This discrepancy has resulted
in applications suffering from a number of quality issues, such as poor perfor-
mance, high memory usage or extraneous power consumption.

This thesis examines the process of analyzing these quality problems. We
focus on mobile applications that use three-dimensional OpenGL ES or two-
dimensional OpenVG graphics. To help solve a given quality issue, we classify
it as a distinct class, based on the dominant cause behind theissue. We note that
this classification process requires a great deal of information about the graphics
of the examined application. Obtaining this quantity of information is not practi-
cal with the tools currently available.

To obtain this data, we will design and implement a set of tools. The key idea is
to capture or trace the graphics drawing commands executed by an application
into a file for further offline processing. These commands are then analyzed, pro-
cessed and transformed to gain the necessary level of insight into the examined
quality issue.

We then demonstrate the usage of the toolkit in examining poor application
performance, a visual error in an application, the quality of a seemingly well-
performing application, the performance profiles of a number of graphics imple-
mentations and the detailed graphics content features of anapplication.

Having completed these use cases successfully, we concludethat the tracer
paradigm is a viable approach for analyzing quality issues in mobile vector graph-
ics applications.

Keywords: graphical debugging, tracing, content features, OpenGL ES, OpenVG

Kyöstilä S. (2008) Mobiilivektorigrafiikkasovellusten laadun analysointityökalu.
Oulun yliopisto, sähkö- ja tietotekniikan osasto. Diplomityö, 100 s.

TIIVISTELMÄ

Tarkoista näytöistä, virtaviivaisista käyttöliittymist ä ja näyttävästä grafiikasta on
tullut nykyaikaisten mobiililaitteiden perusedellytyksiä. Tämä suuntaus on johta-
nut siirtymiseen perinteisestä pikselipohjaisesta grafiikasta monipuolisempaan ja
tehokkaampaan vektorigrafiikkaan. Graafisen sisällön ja suorituskyvyn suhde ei
kuitenkaan ole aina suoraviivainen vektorigrafiikkaa käytettäessä. Tämä on joh-
tanut laadullisesti puutteellisiin sovelluksiin, jotka kärsivät huonosta suoritusky-
vystä, korkeasta muistinkäytöstä tai liiallisesta tehonkulutuksesta.

Tässä diplomityössä käsitellään näiden laatuongelmien analysointia. Työssä
tutkitaan mobiilisovelluksia, jotka hyödyntävät kolmiul oitteista OpenGL ES -
grafiikka tai kaksiuloitteista OpenVG-grafiikkaa. Sovelluksissa esiintyviä laa-
tuongelmia pyritään ratkaisemaan luokittelemalla ongelmat niitä aiheuttavan te-
kijän perusteella. Tämän luokittelupäätöksen tekeminen edellyttää tarkkaa tie-
toa sovelluksen graafisesta sisällöstä. Tällaisen tiedon hankinta ei kuitenkaan ole
käytännöllistä nykyisin saatavissa olevilla työkaluilla.

Työssä esitellään työkaluohjelmisto laatuongelmien luokitteluun vaadittavan
tiedon hankintaan. Työkalun keskeinen lähtökohta on tallentaa sovelluksen teke-
mät graafiset piirtokäskyt tiedostoon myöhempää analysointia varten. Näitä piir-
tokäskyjä analysoidaan ja käsitellään tarvittavan ymmärryksen saavuttamiseksi
tutkittavasta laatuongelmasta.

Työkalun toimintaa esitellään tutkimalla riittämättömän suorituskykyistä so-
vellusta, visuaalista virhettä sovelluksen grafiikassa, näennäisesti laadukkaan so-
velluksen toteutusta, useiden eri grafiikkatoteutusten suorituskykyä sekä yksityis-
kohtaisia tilastoja sovelluksen graafisesta sisällöstä. Näiden käyttötapausten on-
nistuneella toteutuksella osoitetaan, että grafiikkakäskyjen tallentaminen ja jat-
kokäsittely on käytännöllinen menetelmä laatuongelmien analysointiin vektori-
grafiikkaa hyödyntävissä mobiilisovelluksissa.

Avainsanat: graafinen vianetsintä, käskyjen tallennus, sisällön ominaisuudet, OpenGL
ES, OpenVG

CONTENTS

ABSTRACT

TIIVISTELMÄ

PREFACE

LIST OF SYMBOLS AND ABBREVIATIONS

1. INTRODUCTION 8

2. MOBILE COMPUTER GRAPHICS 10
2.1. Vector and Bitmap Graphics . 10

2.1.1. Hardware Acceleration and Standardization 11
2.2. Mobile Application Platform . 12
2.3. Challenges in Mobile Vector Graphics 13
2.4. Vector Graphics and the Perception of Quality 15
2.5. Detecting Quality Problems .16
2.6. Classifying Quality Problems .17

2.6.1. Graphics API Usage . 17
2.6.2. Graphics Content Complexity 18
2.6.3. Graphics Engine Performance 19
2.6.4. Quality Problems Unrelated to Graphics 19

2.7. The Graphics Quality Analysis Toolkit 19
2.8. Previous Work . 20

2.8.1. Graphics Command Tracing 21
2.8.2. Graphics State Tracking . 22
2.8.3. Graphical Debugging . 23
2.8.4. Graphics Workload Characterization24

3. VECTOR GRAPHICS APIS 25
3.1. Evolution of 3D Graphics APIs . 25
3.2. Origins of 2D Vector Graphics APIs27
3.3. Graphics Primitives . 27
3.4. OpenGL ES 1.x Rendering Pipeline 28
3.5. OpenVG 1.x Rendering Pipeline . 30
3.6. Native Windowing System Integration 32
3.7. Performance Factors . 33

4. GRAPHICS QUALITY ANALYSIS TOOLKIT REQUIREMENTS 37
4.1. Functional Requirements . 37

4.1.1. Tracer . 37
4.1.2. Trace Player . 38
4.1.3. Trace Analyzer . 38

4.2. Non-functional Requirements .39
4.3. Use Cases . 39

4.3.1. Unsatisfactory Application Performance 40
4.3.2. Visual Error in Application 41
4.3.3. Application Quality Analysis 42
4.3.4. Graphics Engine Benchmarking 43
4.3.5. Graphics Content Analysis 44

5. GRAPHICS QUALITY ANALYSIS TOOLKIT ARCHITECTURE 46
5.1. Tracer and Trace Player Generator 46

5.1.1. API Configuration . 46
5.1.2. Working with Generated Code 48

5.2. Tracer . 49
5.2.1. Platform Security . 52
5.2.2. Performance Considerations 52
5.2.3. Portability . 54
5.2.4. Trace Files . 54
5.2.5. State Tracking . 55
5.2.6. Tracing OpenGL ES . 58
5.2.7. Tracing OpenVG . 58
5.2.8. Tracing EGL . 60

5.3. Trace Player . 63
5.3.1. Trace Normalization . 63
5.3.2. Trace Portability . 64
5.3.3. Performance Considerations 65

5.4. Trace Analyzer . 66
5.4.1. User Interface . 66
5.4.2. Trace Manipulation . 68
5.4.3. Content Statistics and Graphs 70
5.4.4. State and Frame Extraction 70
5.4.5. Scripting Interface . 73
5.4.6. Trace Query Language . 74
5.4.7. Exporting Traces as C Code 74

6. USE CASE DEMONSTRATION 78
6.1. Unsatisfactory Application Performance 78
6.2. Visual Error in Application . 81
6.3. Application Quality Analysis .. 83
6.4. Graphics Engine Benchmarking . 85
6.5. Graphics Content Analysis . 87

7. DISCUSSION 92
7.1. Future Work . 93

8. CONCLUSION 95

9. REFERENCES 97

PREFACE

This work was carried out for the Display & Graphics Softwaregroup of the Tech-
nology Platforms unit of Nokia Corporation, R&D Oulu. A numberof illustrative
elements used in this thesis were derived from the Oxygen Icon project under the Cre-
ative Commons Attribution-Share Alike 3.0 License.

The initial design for the Graphics Quality Analysis Toolkit was created together
with Kari J. Kangas, Mika Qvist and other members of the NokiaDisplay & Graphics
Software group. This project builds on earlier work in graphics performance measure-
ment done by Kari J. Kangas and Kari Pulli since 2004.

I would like to thank my supervisors Juha Röning, Dr. Tech., and Kari Pulli, Ph.D.,
for their valuable input and discussions during the course of this work. I also wish
to extend my warm thanks to those who have helped me in completing this work,
especially Kari J. Kangas, Mika Qvist, Sila Kayo, Marianne Yrjänä, Jani Vaarala and
others from the Display & Graphics Software team.

Oulu, Finland, February 16, 2008

Sami Kyöstilä

LIST OF SYMBOLS AND ABBREVIATIONS

2D Two-dimensional
3D Three-dimensional
API Application programming interface
CPU Central processing unit
DLL Dynamic link library
GDI Graphics device interface
GPU Graphics processing unit
GPS Global positioning system
M3G Java Mobile 3D graphics
OS Operating system
SVG Scalable vector graphics
SQL Structured query language
VGA Video graphics array

1. INTRODUCTION

The use of vector graphics in smartphones and other mobile devices is increasing
rapidly. Mobile applications such as games, map navigationsoftware, and system user
interfaces are making the transition from traditional bitmap-based graphics to vector
graphics. Free scalability, reduced power consumption through hardware acceleration,
flexible animation support and compact representation are among the key advantages
of the technology. These benefits make vector graphics an attractive solution with
which to meet the demand for increasing display resolutionsand fluid user interfaces
in modern mobile devices.

The adoption of the technology, however, has not been without challenges. Many
mobile vector graphics applications suffer from various quality issues from jerky ani-
mation to high processor, memory and power consumption. These problems are caused
by factors such as:

• the quick transition to vector graphics technology in embedded devices, which
have traditionally only used bitmap graphics

• the complex relationship between vector graphics content and the resulting per-
formance

• developer experience with much more powerful platforms such as PCs, where
software inefficiencies can be mitigated with ever-increasing hardware speeds
and

• not designing applications with performance in mind from the start, but instead
tackling performance issues as they arise

Such quality issues have an immediate impact on device usability and on perceived
product quality. Solving them is therefore a way to enhance user experience. Although
graphics analysis tools such as debuggers exist, they are generally designed for more
powerful devices such as PCs and commonly limited to a single platform or graphics
API. The development environment for embedded devices is usually cross-platform
and more limited in terms of performance. Furthermore, embedded software is often
written at a stage when the target hardware is only availablein an immature prototype
form, making it difficult to use debugging software built forproduction hardware.

This M.Sc thesis focuses on the process of analyzing and solving these quality is-
sues; our aim is to provide practical and efficient means to study the quality of mobile
vector graphics applications. Our system is based on intercepting graphics commands,
i.e., graphics API function calls and associated argument data, to a trace file, which
is then analyzed with a dedicated tool in a workstation environment, surpassing the
limitations of embedded hardware. Our work focuses on applications employing ei-
ther OpenGL ES 1.1 or OpenVG 1.0 -based graphics. We mainly examine applications
running on Nokia smartphones, which use the Symbian operating system.

This text is written from the perspective of a system level graphics integration team
within Nokia. As our work revolves around developing, testing, and integrating graph-
ics technologies for various platforms, the low quality of vector graphics applications

9

is an issue with which we are very familiar. Although our organizational responsi-
bilities are undoubtedly reflected in the design of the toolkit and the quality analysis
process, it should be stressed that the utility of these tools is not limited to a system
integration level.

10

2. MOBILE COMPUTER GRAPHICS

Computer graphics is the practice of using computational constructs to produce and
manipulate synthetic visual images. A broad term, computergraphics encompasses
everything from image processing to digital animation, video games, graphical user
interfaces and more. For the purposes of this thesis, we focus on two major sub-fields
of computer graphics: two-dimensional (2D) and three-dimensional (3D) graphics.

In this chapter, we will first introduce the concepts of computer and vector graphics
and discuss their applications in mobile devices. We then move on to examine vec-
tor graphics quality, its measures and the methods used in analyzing quality issues.
Finally, we present the design of the Graphics Quality Analysis Toolkit for enabling
practical and efficient analysis of vector graphics qualityissues.

2.1. Vector and Bitmap Graphics

The fundamental principle of vector graphics is the use of mathematical descriptions
of geometric primitives such as lines, triangles, and curves to produce pictures. This
is in contrast with more traditional bitmap graphics, whichemploy two-dimensional
arrays of picture elements or pixels; each pixel representsthe color at a single point in
the corresponding picture.

The benefits of vector graphics, as opposed to bitmap graphics, include unlimited
scaling and transforming, as illustrated in Figure 1, resolution independence and a
compact memory-efficient representation. Due to these inherent advantages, vector
graphics has been widely adopted in fields such as computer graphics and the printing
industry.

In computer graphics, two major variants of vector graphicshave emerged: three-
dimensional graphics, which are constructed in three-dimensional space, and two-
dimensional graphics that reside on a two-dimensional plane. The former is most often
used in virtual reality systems and games, while the latter is usually employed in user
interfaces, graphic illustrations, and drawing programs.

In order to display vector graphics, a process called rasterization must be performed.
In rasterization, vector graphics are converted from theirmathematical representation
to an array of pixels, that is, an image that can be displayed on the screen.

In terms of algorithmic complexity, drawing traditional bitmap graphics is quite
straightforward: the computational and storage cost of bitmap images is usually
linearly-dependent on the number of pixels involved. From this relation it quickly
becomes apparent why ensuring high graphics performance becomes more difficult
with increasing screen resolutions: if the screen resolution doubles, the cost of using
bitmap images is effectively multiplied by four. More importantly, the storage space
requirements of bitmap images also increase by a factor of four, leading to more mem-
ory consumption.

In contrast, the algorithmic complexity of vector graphicsrasterization is far from
obvious: vector images can consist of arbitrarily simple ordetailed shapes, regardless
of the resolution of the display device. Similarly the storage space requirements of
vector images are independent of the display size and dependmainly on the level of
detail in the image.

11

Figure 1. Vector graphics can be scaled freely, while bitmapgraphics become pixelated
in the same process.

A similar division between vector and bitmap graphics arises in animated graphics.
Animation using bitmap images is commonly created by preparing multiple images
or frames, each of which show a particular stage of the complete animation. These
images are then shown in rapid succession, creating the illusion of continuous motion.
Due to the high number of images required for non-trivial animations, the memory
cost of this method quickly becomes prohibitive. One solution is to reduce the data set
with video compression methods that exploit the redundancies in successive frames.
This method has the downside that due to the high computational cost of most of
the compression algorithms, the animation content is essentially fixed and cannot be
generated on demand as a response to, for instance, user input. Again, vector graphics
offers a viable alternative approach for producing animation: the animation frames can
be drawn with vector shapes by changing the mathematical properties, such as the size,
form or position, of shapes based on the progression of time.With this method, each
animation frame is generated on demand by rasterizing the vector graphics scene at that
point in time. This method is also much more efficient in termsof storage space, since
an animation file only needs to contain the basic properties of the animated shapes
instead of their full pixel representation as with bitmap graphics.

2.1.1. Hardware Acceleration and Standardization

The designer of a vector graphics system has two choices: vector graphics may be ras-
terized using the main application processor of the system,or a specialized hardware
accelerator can be built to perform the rasterization task.These graphics processors
units, GPUs, can typically perform rasterization many orders of magnitude faster than
an implementation using the generic application processor, a so-called "software im-
plementation". Another advantage of hardware acceleratorsis that they can operate in
parallel with the application processor, enabling other processing while vector graphics
are being rasterized.

12

As the process of rasterizing vector graphics images essentially results in a bitmap
image, it is apparent that as with all bitmap images, the complexity of this operation
is also very much dependent on the number of pixels produced.In other words, the
resolution of the display device is an important factor in determining the performance
of a vector graphics system. For a software vector graphics implementation, this repre-
sents a major stumbling block: even though the vector graphics images themselves are
resolution-independent and compactly represented with geometric primitives, the final
rasterization step becomes prohibitively expensive as screen sizes increase. A dedi-
cated hardware accelerator, however, is not limited in thisfashion: depending on the
architecture, it may produce multiple output pixels in parallel, which translates into a
much improved rasterization speed. Therefore, as the display resolutions in mobile de-
vices continue to increase, the need for hardware accelerated vector graphics becomes
apparent.

The first step in enabling robust hardware acceleration of a technology is to create
a standard abstraction layer that provides a clean separation between the application
and the actual implementation of the technology. In software development terms, this
layer is called the application programming interface or API. In computer graphics
terms, the software or piece of hardware that implements theactual API functionality is
called the graphics engine. A common configuration of these components is illustrated
in Figure 2. The use of a standard API effectively decouples the application from
the graphics engine implementation, enabling applicationportability between different
engine implementations.

Thanks to the long heritage of the technology, many APIs havebeen created for
programming vector graphics. Today, the dominant 3D graphics APIs are Microsoft’s
Direct3D [1] and Khronos Group’s OpenGL [2], both of which are widely used in
desktop PCs, game consoles, engineering tools, and scientific applications.

The mobile and embedded electronics vendors, however, saw that these APIs had
accumulated such a vast array of features during their lifetime that implementing them
on a mobile device would not be feasible. Direct3D also had the added constraint
of being a closed standard controlled by Microsoft and at thetime limited to devices
running Windows. The solution chosen by the industry was to take OpenGL and strip
out all the non-essential components forming an embedded subset [3 p. 68], OpenGL
ES [4]. A more recent addition to the field is OpenVG [5], whichis aimed at 2D vector
graphics.

To oversee the standardization of these and other new embedded media APIs, a con-
sortium called The Khronos Group was formed. Their mission is to create open stan-
dard, royalty-free APIs that enable the authoring and accelerated playback of dynamic
media on a wide variety of platforms and devices [6].

2.2. Mobile Application Platform

Symbian is the leading smartphone operating system (OS) with a 72% market share in
the first quarter of 2007 [7]. It is used in a number of mobile device models by Nokia,
Motorola, Sony Ericsson, Siemens, and others. Symbian provides a comprehensive
third-party software development environment open to third-party developers.

13

Figure 2. Separating the application from the graphics engine with a standardized API
enables application portability from one engine to another.

Symbian OS is based on a real-time nanokernel architecture that provides process
scheduling and isolation, memory management, device drivers, file system services,
windowing, and all other features one would expect from a fully fledged modern em-
bedded operating system. It has a rich set of APIs that offer,for example, imaging, au-
dio, positioning and internet services. In the context of vector graphics, both OpenGL
ES and OpenVG are supported [8] [9].

In addition to Symbian, a major component in Nokia smartphones is an applica-
tion middleware called the S60 Platform [10]. The S60 Platform provides the device’s
graphical user interface and the built-in applications. From the developer’s perspective,
the S60 Platform offers additional services, the most relevant of which is the graphical
user interface toolkit Avkon [11 p. 21]. From a vector graphics standpoint, an interest-
ing recent addition to the platform is the support for Scalable UI [12], which decouples
applications from the physical screen resolution. Technically this is achieved by draw-
ing the whole graphical interface using scalable vector graphics (SVG) images.

Due to the relatively rapid development of the industry, therange of available Sym-
bian devices on the market is very wide; in the six years following the introduction of
Nokia’s first Symbian-based smartphone, central processing unit (CPU) speeds have
more than tripled to over 330 MHz, display sizes have reachedquarter-VGA (video
graphics array) resolution (320 by 240 pixels) and memory capacity has surpassed 64
megabytes [13]. A mobile application developer must acknowledge that these numbers
only represent the very high end of devices. Taking the wholeclass of smartphones
into account, these performance figures will vary greatly. This presents a considerable
challenge for mobile application development: how to ensure that the application will
perform adequately on all intended devices.

2.3. Challenges in Mobile Vector Graphics

Vector graphics and vector graphics accelerators have beenintroduced in mobile de-
vices in a fraction of the time it took for them to appear in commodity workstations.

14

This rapid development has placed a great deal of pressure onlegacy system soft-
ware and bitmap-based application middleware layers, which have not been designed
to benefit from graphics hardware acceleration.

Some aspects of traditional bitmap-based graphics interfaces are particularly poorly
suited for hardware acceleration. An example of such a feature is the action of al-
lowing applications to directly modify the pixel contents of graphics images. With
graphics accelerators, image data is often stored in dedicated graphics memory, which
is inaccessible from the application processor. Allowing applications to modify graph-
ics images directly in such systems results in heavy memory bus traffic, as the con-
tents of the graphics images must be transported back and forth between the dedicated
graphics memory and the main memory. Another major stumbling block is the use
of synchronous graphics operations, which are performed completely before returning
control to the application. For example, if an application tries to acquire a copy of the
rendered image, it is forced to wait until the accelerator has finished drawing it. Since
high performance vector graphics acceleration often relies on efficient parallelism, syn-
chronous graphics operations can have a major negative performance impact.

In an ideal world, the system software would simply be modified to work better with
hardware graphics acceleration. In most cases, this cannotbe done due to the large im-
plementation effort and interest in retaining the binary compatibility of the platform,
that is, allowing applications written for an older revision of the platform to work on
newer versions without modifications. This is less of a problem for proprietary plat-
forms, where the software vendor has full control over all the applications, but more
so on open platforms such as Symbian. A common approach is that backward compat-
ibility in new systems is retained through special emulation code, which allows older
unmodified applications to work with the latest graphics accelerators. This emulation,
however, may come at a performance cost, and it may not alwaysbe entirely obvious
which graphics functionality is implemented through the emulation. This poses the
application developer with the challenge of how to steer clear of these performance
pitfalls.

In addition to the system software, the mobile application development tools also
pose a set of problems for the programmer. At the time of writing, performance valida-
tion tools for Symbian applications are limited to source level debuggers and sampling
profilers, and therefore reliable performance data is hard to obtain. Furthermore, since
a profiling tool only measures activity on the application processor, comprehensive
data for dedicated graphics accelerators is not available.

In graphics system integration work, a common situation is that a poorly perform-
ing graphics application is not written by the same person who is assigned to debug
the problem. Especially in such cases, trying to analyze thegraphics operations of an
unknown application solely by looking at its source code in adebugger is not a sus-
tainable way of working. Firstly, there are no guarantees for the quality of the source
code, and discerning the internal logic of the application may be time consuming; sec-
ondly, the parameters of single function calls do not conveyenough information about
the effective graphical content of the application; and finally, it is not uncommon that
the application source code is simply not conveniently available, for instance, if the
application was written by a third party developer outside Nokia.

Experience is also a major issue; a developer with a PC background is unlikely to
be able to appreciate the special limitations of a mobile device. While the available

15

set of features will make most desktop developers feel at home, Symbian devices often
have substantial performance limitations that should be factored into application design
from the beginning. In the scope of vector graphics, the mostlimiting factors are
memory and bus bandwidth, the lack of a dedicated graphics processing unit and the
fact that at the time of writing, floating point calculationsare commonly performed
with slow software emulation [3].

The vector graphics APIs are also somewhat problematic in terms of performance.
One of the virtues of an API is to hide implementation detailsfrom the application
developer. Conversely, the performance response to different graphics content of im-
plementation is often also concealed. With APIs such as OpenGL ES and OpenVG,
this causes a disconnection from the graphics content to thefinal performance seen
by the developer. This makes performance estimation of unknown graphics hardware
very difficult without extensive benchmarking work.

2.4. Vector Graphics and the Perception of Quality

Quality is a term generally associated with the superiority, or at least non-inferiority, or
the usefulness of something [14 p. 311]. For the purposes of this thesis, we can define
a number of characteristics of vector graphics and user interaction that contribute to
the quality of an application:

• Fidelity—the graphics should be free of visually distracting artifacts and other
flaws.

• Fluidness—animated graphics should be performed at a sufficient rate to pro-
duce the illusion of continuous motion.

• Responsiveness—the application should respond to user interaction with a tol-
erable delay.

• Usability—the graphics should not hinder usage of the application.

• Low resource utilization—the application should not consume excessive re-
sources, such as processing capability or memory space while producing the
graphics.

This enumeration is by no means exhaustive, nor can the listed items be said to be
fully independent; the intent here is to convey a general idea of the type of factors we
consider when establishing the quality of a vector graphicsapplication.

Vector graphics are mainly used in mobile devices to construct a graphical user
interface for the person using the device. Since the interface is, by definition, very
visible for the user, any major quality deficiencies in it will have an effect on his or her
perception of the overall device quality. This kind of direct exposure emphasizes the
importance of quality vector graphics in mobile devices.

While jitter and synchronization skew in non-interactive media has been shown to
be tolerable to a certain degree [15] and the information content of video material is
understood even at a low frame rate [16], latency and lag in a graphical user interfaces
has a direct impact on the system response time and ultimately on the ease of use

16

of the system [17]. Therefore, minimizing graphics latencyand jitter improves user
experience.

Traditionally, mobile graphical user interfaces have beenmostly static displays of
information due to limited processing power and display hardware constraints. In such
systems, the display was usually updated quite rarely as a direct response to user ac-
tions, such as menu navigation. While the latency of continuously animated graphics
was not a major quality factor in such a system, the input response latency of the sys-
tem has and always will be of paramount importance to a good perception of quality.
Additionally, research has shown that animation helps the user gain a more thorough
understanding of presented data, especially if the data is spatial in nature, such as a
hierarchy of menu options [18]. In this light, it is not surprising that that mobile user
interfaces are quickly moving from the traditional static constructs to animated transi-
tion effects [19] and other dynamic elements. The general trend is that non-animated
interfaces are seen as old fashioned and boring, while flashyanimated interfaces gather
much more attention [20]. It is therefore important that a mobile device has proper sup-
port for animated graphics from both the usability and marketing perspective.

2.5. Detecting Quality Problems

Due to the visible role of graphics in user interfaces, quality problems can generally be
detected simply by using the device in question; common symptoms such as sluggish
responsiveness, long waiting times, poor battery life and graphical glitches are hard
to miss. The difficulty lies in turning these subjective measures into concrete metrics
and using them to systematically identify and solve vector graphics quality problems.
An equally important part of the issue is determining whether the problem has in fact
anything to do with graphics.

For animated graphics, a universally understood measure ofquality is the frame
rate, which indicates how many times the device display is updated per second. A
commonly considered lower bound for real time animation is 10 frame updates per
second [21]. When the animation is controlled or triggered bythe user, a similar
measure of system latency can be used. It indicates the time from user input to a visible
result on the screen. In addition to graphics latency, system latency also includes all
other processing done in the system. These two types of time measures are illustrated
in Figure 3.

In the context of mobile application platforms, we must alsoconsider the power
consumption of graphical processing. Power consumption, measured in amperes, indi-
cates how much current is drawn from the device battery at a given time. Since battery
charge is a finite resource, conserving it should be a top priority. As graphics are often
drawn several times per second, minimizing their power usage is worthwhile.

In the following sections, we will examine what aspects of a vector graphics system
have an impact on these measures and how those aspects can be studied.

17

Figure 3. Frame latency is defined by the graphics display update rate, while system
latency is the time taken by the system to respond to user input.

2.6. Classifying Quality Problems

Once a quality problem is detected, the next step is to investigate what factors con-
tribute to it. Quality issues are usually brought on by a combination of various prob-
lems throughout the system, but often one cause can be seen asthe dominating one.
After the most significant quality issue has been identified,it can be used to plan further
optimization work. Therefore it is advantageous to make this classification process as
efficient as possible.

In this work, we employ a quality problem classification model based on the domi-
nating contributing factor:

1. Dominant cause in API usage patterns

2. Dominant cause in graphics content complexity

3. Dominant cause in graphics engine

4. Dominant cause unrelated to graphics

Next we examine each problem class in detail and discuss whatkind of information
is needed to determine whether a problem belongs in that particular class. It should
be noted that we do not strive for a fully automated classification system, but rather to
provide a toolset for making the process practical for a graphics engineer.

2.6.1. Graphics API Usage

The way an application uses a graphics API has great consequences in terms of quality.
Quality problems in this area often stem from the fact that inboth OpenGL ES and
OpenVG, and in vector graphics APIs in general, there are many ways to accomplish
a given goal. For instance, drawing a forest scene could be done by drawing each tree
separately or by drawing the whole forest with a single draw call; the graphical end
result is the same for both methods, but the performance is most likely superior in
the second case. Another example is the usage of certain synchronous API functions,

18

which may have significant performance costs on hardware graphics accelerators while
having a much lower overhead on software renderers.

Analyzing the API usage pattern of an application begins by looking at the sequence
of API function calls executed by the application. The traditional way of doing this is
by manually reviewing the source code of the application. Experience with embedded
graphics software integration has shown that this is an ineffective way of working. In
general, it is anything but straightforward to discern reliably how an application will
behave merely by looking at its source code. Furthermore, insome cases the source
code may not even be conveniently available. While an interactive debugger may be
used work around this limitation, it is an impractical way ofworking if the number
of API calls is large. Therefore, a more effective way to obtain the API call sequence
is needed. As embedded devices are unsuitable for extensiveanalysis work due to
processing power and user interface constraints, using a more powerful workstation
for analyzing the API call sequence should also be possible.

Graphics API usage analysis is also needed to determine the cause of visual render-
ing errors. The error could be caused by erroneous API usage or a fault in the graphics
engine. In either case, the API call trace is needed in order to isolate the error.

Obtaining the API call sequence is only the first step, however. The resulting se-
quence will also need to be analyzed and processed to identify any possible quality
problems. As a common graphics application can execute thousands of graphics com-
mands per second, manual analysis of the often enormous calltrace is not always
feasible. Practical tools for examining API call sequencesare therefore also necessary.

2.6.2. Graphics Content Complexity

The graphics content of an application comprises the graphical primitives drawn dur-
ing its operation. The graphical primitives in this contextcan be elementary geometric
shapes such as points and triangles or aggregations of multiple shapes, such as a com-
plete three-dimensional object.

The key thing to consider when evaluating graphics content quality is whether or not
it presents an appropriate workload for the graphics engine. A common mistake is to
model graphical objects with too many details without regard to how large they appear
on the device screen. Another often-made oversight is to first draw a complex object,
only to later cover it completely with another object.

Estimating the workload produced by graphics content can bebased on character-
izing various empirically measurable aspects of the content. A canonical example of
such a metric is the number of triangles used to build the rendered graphical objects.
Once the metrics have been calculated, they can be used to judge how well the content
matches the capabilities of the underlying platform. Additionally, the same content
features can be used to develop synthetic benchmarks with matching content features.
The advantage of synthetic benchmarks in comparison to using regular applications for
benchmarking is that their content features can be more easily parameterized to obtain
content variants with extrapolated complexity.

Calculating detailed content statistics is traditionally done with the help of a spe-
cially instrumented graphics engine. As of today, there is no such comprehensive tool

19

for obtaining such measurements from mobile graphics applications. For the purposes
of graphics quality analysis, one is needed.

2.6.3. Graphics Engine Performance

In order to make meaningful judgments about graphics content complexity, one also
needs to establish the performance profile of the graphics engine that will do the actual
rendering work. This is often done by running special benchmarks programs that draw
some synthetic graphics and measure the performance of the graphics engine. The term
synthetic is used here to differentiate the graphics content of a real application versus
the graphics content created specifically for benchmarkingpurposes. The problem
with this approach is that the content characteristics of synthetic benchmarks may not
necessarily match those of real-world applications. That is, the benchmarks could
essentially be measuring the wrong thing. These synthetic benchmarks can be made
better by basing their design on measured content features as explained in the previous
section.

Actual graphics applications can also be used for benchmarking purposes, but that
will usually require programming special measurement routines into each used appli-
cation. Furthermore, the tested graphics engine may only work on prototype hardware
that is incapable of running regular applications. Due to these limitations, using real
application content for benchmarking mobile graphics engines is usually impractical.

Accurate and reliable engine performance profiling benefitsfrom the use of both real
application graphics content and content feature-based synthetic benchmarks.

2.6.4. Quality Problems Unrelated to Graphics

The final class of quality problems contains the problems that fall outside the scope
of vector graphics. If the graphics API usage patterns and content analysis indicate
no adverse issues, a quality problem can be considered to be caused by some other
component in the system or by the application itself. An example of such a problem
is an application that is performing so many internal calculations, that it is unable to
submit graphics commands to the graphics engine at a high enough rate. Problems that
fall under this class should be dealt with traditional software development tools such
as debuggers and profilers.

2.7. The Graphics Quality Analysis Toolkit

From the previous discussion, it is apparent that there is great room for improvement
in the process of vector graphics quality analysis. For thisreason, we set forth to build
a special set of tools for assisting the solving of vector graphics application quality
issues and estimating graphics engine performance. The main objective of the toolkit
is to make it as easy as possible to examine the graphics produced by a mobile vector
graphics application in great detail. The toolkit also offers support for benchmarking
graphics engines using real and synthetic graphics content. While toolkit is mainly tar-

20

Figure 4. The general workflow for the Graphics Quality Analysis Toolkit is to trace a
vector graphics application on a mobile device and to analyze the captured trace in a
workstation environment.

geted at the OpenGL ES and OpenVG APIs and applications running on the Symbian
platform, it is also designed to be portable to other APIs andplatforms. An important
requirement is offline analysis, since extensive development work on a mobile terminal
is impractical due to processing constraints and user interface limitations. The desired
general workflow of the toolkit is illustrated in Figure 4.

Based on these high level requirements, The Graphics QualityAnalysis Toolkit is
designed to comprise the following components:

1. A Tracer for capturing all OpenGL ES and OpenVG graphics commands ex-
ecuted by a Symbian application. The commands will be saved to a trace file,
which can be copied to a workstation for further analysis.

2. A Trace Player for repeating the captured graphics commands. The player can
be run on a variety of platforms with any compatible graphicsengine.

3. A Trace Analyzer for examining and manipulating the graphics command trace
files. The analyzer is used on a Windows workstation.

4. Instrumented OpenGL ES and OpenVG graphics enginesfor extracting de-
tailed content statistics from trace files.

The overall configuration and interaction of these components is shown in Figure 5.

2.8. Previous Work

The following sections present a survey of graphics research work that is related to the
domain of vector graphics quality analysis.

21

Figure 5. The main components of the Graphics Quality Analysis Toolkit are the
Tracer, which captures graphics commands to atrace file; theTrace Player, which
replays captured graphics commands and theTrace Analyzer, which uses aninstru-
mented graphics engineto extract information from a trace file.

2.8.1. Graphics Command Tracing

The method of unintrusively tracing graphics calls from programs was formally intro-
duced by Dunwoody and Linton [22]. In their design, the OpenGL commands of a
graphics application are captured in a binary trace file in a graphics API neutral lan-
guage for later analysis. Their tracer masquerades as the system graphics engine by
providing an identical binary interface to the application. The inherent advantage of
not requiring any instrumentation of the application code or the graphics engine was an
important reason for choosing the same method of graphics call tracing as the funda-
mental basis of our work. Our approach, however, differs in that we keep the graphics
command abstraction level at the level of individual API calls instead of specifying

22

a higher level intermediate language. This ensures that we could capture the exact
behavior of the traced application as closely as possible.

The same basic technique of tracing has also been utilized byHumphreys et al., in a
system called Chromium [23]. Chromium is an extensible OpenGLcommand stream
processing library, which provides a virtual OpenGL graphics engine implementation.
The captured OpenGL API calls are routed through a network ofSPUs or Stream
Processing Units. Each SPU can perform arbitrary processing of the command stream.
Example uses include diverting OpenGL graphics rendering to a cluster of computers
and compositing the resulting image on a local display. Chromium has also been used
in performance estimation [24], where an OpenGL trace is used to drive a simulated
graphics processing unit model.

Chromium has a very similar architecture to the tracer in our system, and thus could
have served as a basis for our implementation. Instead, we chose to implement a cus-
tom tracer through code generation. This enables us to support nearly any C-based
API, such as OpenGL ES and OpenVG, while Chromium would have directly offered
support only for OpenGL. Additionally, our platform portability and performance re-
quirements on embedded systems also necessitate a custom, more focused solution.

The OpenGL API defines a built-in mechanism for tracing and playing back graphics
command sequences or display lists [25]. Applications can request that several com-
mands are compiled into a display list, which can be later played back with a single
command. Display lists can be used to improve performance, as they enable applica-
tions to redraw commonly used graphical objects with minimal overhead. As display
lists are immutable, the graphics driver can preprocess their contents to improve ef-
ficiency. From the application’s point of view, however, display lists are opaque and
no information about the contained commands can be retrieved or stored outside the
application. Our approach differs in that we make the contents of trace files explicitly
available for detailed analysis and processing.

2.8.2. Graphics State Tracking

OpenGL ES, OpenVG and other similar graphics APIs are essentially state machines,
the state being the active rendering settings enabled in thegraphics engine. This graph-
ics state has a very direct relation to graphics performance, since different rendering
settings produce different workloads for the graphics engine. From a vector graphics
quality analysis point of view it is therefore imperative toknow the graphics state used
to draw primitives.

Graphics state tracking is commonly used in distributed or remote graphics render-
ing, where it is beneficial to minimize the number of rendering commands sent over
the network. The graphics libraries themselves also often employ some form of state
tracking in order to avoid needless expensive round trips tothe graphics hardware.
State tracking is also needed for sharing the same GPU between multiple applications,
where the graphics state of an application needs to be saved and later restored to allow
other applications to use the GPU in between.

A state tracking application by Buck, Humphreys, and Hanrahan [26] employs a
hierarchical state tracking model that can be used to split the rendering work of one

23

application to multiple rendering nodes. The Chromium system also offers a state
tracker for satisfying application state queries locally in addition to other uses.

State tracking also plays a very central role in our work. It enables many of the key
use cases of the Tracer and the Trace Analyzer, such as extracting frame sequences
from longer traces and pinpointing quality problems in traces. Since a requirement for
the toolkit is to be graphics API-neutral, the same principle also applies to the state
tracker. This lead us to develop a generic tree data structure suitable for describing
the state of EGL, OpenGL ES, OpenVG, and other similar APIs. This method greatly
reduces the amount of work for adding new graphics APIs to oursystem in comparison
to hand-written state tracking code as used by Buck et al., Chromium and others. Our
method also ensures that the traced graphics calls are not modified in any substantial
way in comparison to the original application. This is important, since our system
is designed for reproducible application debugging and anyunintended modification
of the graphics command stream might change the behavior of the graphics engine
substantially.

2.8.3. Graphical Debugging

NVIDIA PerfHUD [27] is comprehensive interactive Direct3Danalysis tool by NVIDIA.
It allows the user to suspend a running graphics applicationand examine detailed statis-
tics from different units of the graphics pipeline. Additionally, the user can modify the
rendering settings, shader source code, textures and otherattributes of the inspected
application in real-time. NVIDIA PerfHUD is available for Microsoft Windows and
works only with NVIDIA graphics hardware.

GDEBugger [28], a product by Graphics Remedy, is an interactive graphical debug-
ger for examining the execution of OpenGL and OpenGL ES programs. It provides a
very broad range of statistics on the running program, such as the executed graphics
calls, graphics state variables, performance graphs and counters and the relative load of
the different graphics pipeline stages. It is a developer friendly tool indented for quick
pinpointing of errors and performance issues in graphical applications. GDEBugger
runs on the Microsoft Windows and Linux operating systems.

GLIntercept [29] is also a similar, albeit less sophisticated tool. Rather than a full-
fledged debugger, it is more of a graphical event logger. It can save all the OpenGL
commands made by an application to a file, along with extra data such as framebuffer
snapshots and texture images. It also has a mechanism for introducing interactive
analysis features, such as free camera movement around the 3D graphics drawn by the
application.

A relational graphics debugger introduced by Duca et al. [30] focuses more on the
data extraction stage of the debugging process. Their system is built on a powerful
structured query language (SQL) -based language that can beused to extract data from
all stages of the graphics pipeline. While the debugger can answer simple queries
directly based on submitted graphics commands, more complex queries are answered
by replaying a portion of the graphics commands through automatically instrumented
shader programs.

These and other commonly used graphical debugging solutions are based on live
interaction with the debugged application. Our approach isto instead focus completely

24

on offline trace analysis. In the context of embedded applications, offline analysis
is essential since the target device often lacks the necessary processing power and
usability for interactive graphical debugging. Working with trace files rather than live
applications also has the added benefit of providing completely repeatable graphics
sequences; in effect, it separates the examined quality issue from the application. Off-
line analysis also facilitates remote debugging, in which the execution environment and
the application can be physically separate from the analysis environment. Our system
also adds the possibility of transforming the trace file intodifferent formats, such as
plain text, portable C code and numerical data for statistical analysis.

2.8.4. Graphics Workload Characterization

Graphics workload characterization is the process of deriving concrete numerical fea-
ture points from a sequence of graphics operations. The intention is that these statistics
can be used to gauge the performance characteristics and theoverall complexity of the
examined graphics sequence.

Workload characterization is a useful technique for hardware vendors, since they
can use data acquired through it to evaluate new graphics hardware designs. In effect,
the vendors can estimate how a given hardware implementation would perform when
given content similar to that which is used for workload characterization.

Workload statistics are useful also beyond hardware design; in an application by
Wimmer and Wonka [31], a rendering time equation is derived from various content
measures and used to estimate the rendering latency of a graphics scene before it is
drawn. They demonstrate the use of the equation for maintaining a minimum frame
rate in interactive graphics applications by scaling the level of graphics detail.

The common problem in all workload characterization is deciding what to measure.
This is difficult because the actual workload of particular graphics content depends
heavily on the underlying graphics renderer architecture.Chiueh and Lin [32] intro-
duced a set of 3D workload characterization statistics based on an analysis of the 3D
graphics pipeline. To obtain the measurements, they used a manually-instrumented
version of the open-source Mesa OpenGL graphics library. Some of the measurements
they used were the percentage of culled triangles, the average triangle span width and
the depth complexity or overdraw amount of the scene. This idea was extended by
Mitra et al. [33] by also taking into account low level hardware characteristics such as
texture memory traffic and chunked rasterization.

The previous research into graphics workload estimation and characterization is used
as a basis for the trace file content features that can be calculated with our system. Our
objective was to build a system that provides the features most commonly used for
workload estimation. While previous research only covers three-dimensional graphics,
our toolkit also provides content features for two-dimensional vector graphics.

25

3. VECTOR GRAPHICS APIS

An application programming interface or an API is a programming abstraction that
enables clean and systematic code reuse. An API is essentially a contract between
a library of code and a program that uses the code. The API specifies all messages
and data flowing from the program to the library and vice versa. The power of the
API concept comes from the fact that the implementation of the library is essentially
undefined from the application’s point of view, as long as it abides by the interface
specified by the API.

An API is usually targeted at a specific programming language. The C language
is a popular choice, since it is supported nearly universally and C-based libraries are
usable in many other higher-level languages through wrappers and other extension
mechanisms.

The purpose of a vector graphics API is to allow programs to draw images using
vector graphics. As shown in Figure 2 on page 13, a chief virtue of a such an API is to
insulate the application from the physical graphics hardware. With a standardized API
in place, applications can be moved from one graphics hardware to another with little
or no changes. The lack of such an API leads to each vendor defining proprietary ways
of controlling their graphics hardware, which has the effect of coupling applications
tightly with a particular piece of hardware.

Most vector graphics APIs also strive to hide the functionaldifferences between
different graphics hardware by mandating a common feature set that must be present.
If a particular piece of hardware does not directly support aparticular feature of the
API, it is usually required that the missing feature should be emulated via software.
This makes it easier to write portable applications, but almost impossible to know
if a particular graphics operation sequence triggers slow software emulation in some
platforms.

In this chapter, we will look at the present state and evolution of a number of two-
and three-dimensional vector graphics application programming interfaces. As the
main subjects of this thesis, OpenGL ES and OpenVG are then presented in more
detail. In addition, a binding API called EGL is introduced.The chapter closes with a
discussion on the performance aspects of the presented APIs.

3.1. Evolution of 3D Graphics APIs

In the earlier days of vector graphics, a standard vector graphics API was nowhere
to be found, and unsurprisingly, the need for common APIs soon surfaced. By the
late 1980s and early 90s, a hardware independent API called PHIGS was gaining mo-
mentum. The name stood for "programmers’ hierarchical interactive graphics system".
PHIGS was a relatively high level API, where graphics were produced from hierarchi-
cal data structures of 3D objects [34]. A company called SGI,however, saw PHIGS as
a threat to its line of graphics workstations. At the time, SGI’s machines were using
a proprietary graphics API called IRIS GL, which was an abbreviation for "integrated
raster imaging system graphics library". To ensure its relevance in the market, SGI
started licensing an open version of IRIS GL to its competitors. This new graphics
library, introduced in 1992, was called OpenGL [35].

26

In comparison to PHIGS, OpenGL’s approach to graphics was different in a funda-
mental way. Vector graphics APIs can be roughly categorizedinto two distinct groups
based on the way the graphics are constructed. PHIGS is an example of a retained
mode API, where the complete description of the graphics scene is first given and
then drawn with one command. Retained mode graphics APIs dealwith high level
constructs such as objects and their hierarchies. A retained mode graphics library is
usually built around the concept of a scene graph, which describes the drawn graphical
objects and their relations. The original OpenGL, on the other hand, was an immediate
mode graphics API. It differed in the sense that the available graphics commands were
very fine grained; a triangle, for instance, was drawn by specifying the coordinates,
colors and other attributes of its vertices, each with its own API call. This provides ap-
plications with a very high level of control over the produced graphics, although many
more steps are required to draw them.

OpenGL’s low level approach enabled applications to attainbetter performance by
optimizing the graphics commands sent to the graphics library. It also enabled the
drawing of graphics that could not conveniently be described using a hierarchical
scene graph. These advantages, combined with the APIs relative simplicity, lead to
OpenGL’s quick dominance of the 3D graphics APIs. [36 p. 138]

Microsoft, one of the early adopters of OpenGL, opted instead to create their own
proprietary, even lower level vector graphics API called Direct3D. Originally, Di-
rect3D featured both a retained mode and an immediate mode, but the former was soon
abandoned due to lack of developer interest. The initial immediate mode of Direct3D
was similar to OpenGL, but at a lower level and with a much morerestricted feature
set; the first version of Direct3D, released in 1996, had developers essentially filling
command queues for graphics chips. This cumbersome interface was later upgraded
with higher level convenience functions. [37]

Direct3D has since become the dominating graphics API for the computer games in-
dustry. Its wide adoption can be explained in part with the focus on high performance
from the start and the fact that the reduced feature set made it easier for hardware ven-
dors to produce Direct3D-compatible video cards. However,as video games graphics
have become increasingly demanding, the feature sets of both Direct3D and OpenGL
have evolved to quite an equal standard [38, 39].

More recent developments in graphics hardware have broughtthe deprecation of
the traditional fixed function pipeline in favor of programmable shader units. Modern
versions of both OpenGL and Direct3D allow the user to execute special programs
on the graphics processor to dynamically control the shape,material, and composition
of objects [38, 39]. As neither OpenGL ES 1.1 nor OpenVG support programmable
shaders, they are not discussed here in any more detail.

Both OpenGL and Direct3D have seen embedded variants, namelyOpenGL ES and
Direct3D Mobile [40]. In 2004, Symbian became the first embedded platform to of-
fer an OpenGL ES 1.0 graphics engine accessible to third party developers with the
introduction of the Nokia 6630 smartphone [41].

27

3.2. Origins of 2D Vector Graphics APIs

A dominant force in the development of 2D vector graphics is the printing press, where
the high resolution of the medium is a strong justification for using a vector-based rep-
resentation. The industry standard for printing 2D vector images is Adobe’s PostScript.
Introduced in 1984, PostScript is not merely an API, but rather an executable, Turing-
complete language with well-integrated graphics support.[42]

Drawing in PostScript is based on the concept of paths. A pathis a collection of line
segments and curves. To produce graphics, the area inside a path is filled or the outline
of a path is traced or stroked. This same concept is also the basis for most other 2D
vector graphics APIs.

As computer display resolutions and processing capabilities have increased, 2D vec-
tor graphics also started seeing interactive applications, ultimately leading to the de-
velopment of standard 2D graphics APIs. One of the earliest of such APIs was an
evolution of PostScript called Display PostScript. It extends the PostScript model with
better support for the relative low resolution of computer displays and includes opti-
mizations for better performance. [42]

As interpreted domain languages, PostScript and its derivatives are difficult to in-
tegrate to a C-based application. Outside dedicated printing equipment, their robust
hardware acceleration is not common. To overcome these issues, a number of more
traditional declarative APIs have also been developed for producing 2D vector graph-
ics. Graphics user interface systems such as Windows GDI [43] (graphics device in-
terface), Xlib [44] and Symbian GDI [45 p.487–509] commonlyimplement a limited
subset of the PostScript imaging model, although until recently they have been more
geared toward pixel-oriented graphics for performance reasons. Common limitations
in such toolkits are the lack of free graphics transformation and resolution dependence.
However, as modern applications are more demanding in termsof graphics operations,
UI toolkits are quickly transitioning to using more robust vector graphics techniques
[46, 47].

Of the more recent APIs, Khronos Group’s OpenVG is the most notable one from
the perspective of this thesis. OpenVG is a low level, OpenGL-style C API, which is
based on the same concept of filling and stroking paths as PostScript. It was introduced
in 2005 and designed with embedded systems and hardware acceleration in mind. One
of its main selling points is the support for popular media formats such as Adobe’s
Flash and W3C’s SVG. [48]

3.3. Graphics Primitives

A key concept in any graphics API is the fundamental graphicsprimitive that is used
to construct everything seen on the screen. Some basic geometric primitives for 3D
graphics are points, lines, triangles, and polygons. Of these, triangles are most com-
monly used, because they can be used to approximate almost any kind of natural ge-
ometry by being grouped into meshes. Triangles also have theimportant property
of always lying in a plane. This makes rasterizing them into pixels a straightforward
operation and easily accelerated in hardware. In contrast,polygons can be shaped arbi-

28

trarily, even in ways that cause them to self-intersect. This is why support for polygons
was not included in OpenGL ES when compared to OpenGL. [36 p. 61]

The 3D objects constructed from geometric primitives can bemade to look more
realistic by simulating different materials and lighting effects. A common technique
is texture mapping, where a two-dimensional image is stretched over a 3D object.
OpenGL ES provides support for modeling the effects of theseand some additional
physical phenomena. [49]

Primitives for two-dimensional rendering include points,lines, circles, rectangles
and curves. A special type of curve called the Bézier curve is typically used to construct
round shapes that will appear smooth regardless of their scale. OpenVG supports all
of these primitives.

Since 2D vector graphics are not primarily about simulatingthe appearance of real
objects, OpenVG does not directly try to simulate differentlighting conditions or ma-
terials. Instead, it applies the concept of a paint, which can be used to color a drawn
shape with a single color, a color gradient or an arbitrary image pattern. [48]

The process of composing images with these fundamental graphics primitives and
operations in both OpenGL ES and OpenVG is illustrated in Figure 6.

In OpenGL ES, a number of 3D coordinates called vertices are first connected with
triangles to produce meshes. In Figure 6, vertices are drawnas filled circles. These
meshes are then drawn as seen from a specified camera positionwith optional lighting,
texturing, and other effects.

In OpenVG, a path is first defined using concatenated line segments or curves. The
boxes shown in Figure 6 are the control points for the path. The path is then stroked
and filled using specified paint styles. OpenVG also allows the use of image filters,
such as blurring, to post-process the rendered image.

In vector graphics APIs, the drawing commands and other datasubmitted by the
application flow through a network of components called the graphics pipeline. The
term pipeline is used, because these constructs are usuallyvery serial in nature and
most of the data flows through the same path. Although the components or stages of a
pipeline are arranged serially, the stages themselves are very parallel in nature and can
often work on different parts of the submitted data simultaneously.

In the following two sections, we will examine the pipeline structures of both
OpenGL ES and OpenVG in more detail.

3.4. OpenGL ES 1.x Rendering Pipeline

The high level structure of the OpenGL ES 1.x rendering pipeline is illustrated in
Figure 7 [49 p. 11]. The main components are:

1. Per-Vertex Operations and Primitive Assembly:The rendering operation be-
gins here with the application submitting a number of vertices and the set of
graphics primitives to be assembled using these vertices. The OpenGL ES li-
brary then transforms these vertices, based on where the virtual camera is placed
and calculates which produced primitives are visible. The effects of lighting and
fog are also calculated for each vertex here. [49 p. 11]

29

Figure 6. OpenGL ES and OpenVG images are composed of respective fundamental
graphics primitives: the triangle and the path.

Figure 7. The stages of the OpenGL ES rendering pipeline.

30

2. Rasterization: This stage converts the visible primitives into a number of frame-
buffer elements called fragments. Each fragment corresponds with a single pixel
in the framebuffer. The collection of fragments for a primitive is essentially the
image of the primitive on the framebuffer. The color of a fragment can be de-
fined through the vertices making up the primitive or textureassigned for the
primitive. A technique called antialiasing can be used to smooth the edges of
rasterized primitives by taking into account that a particular pixel may be only
partially covered by the primitive. [49 p. 11]

3. Per-Fragment Operations: Finally, the produced fragments are written to the
framebuffer to produce a visible image. Each fragment is notnecessarily written
as is; semitransparent fragments can be blended or mixed with fragments that
are already in the framebuffer. A depth test can also be used to determine that
an existing fragment in the framebuffer is closer to the viewer, leading to the
new fragment being discarded. The visibility of individualfragments can also
be controlled based on alpha color values with the alpha test, rectangular regions
with the scissor test, and arbitrarily shaped areas with thestencil test. [49 p. 99]

4. Framebuffer: The framebuffer is a two-dimensional pixel store that will contain
the final rendered image. In addition to visible color information, the framebuffer
can store additional attributes for each pixel, such as a transparency factor or
alpha component, the depth or distance from the viewer, or a stencil value that
can be used to limit drawing to a particular area. [49 p. 99]

5. Texture Memory: Texture memory is used to store two-dimensional images
called textures, which can be applied to the surface of drawnobjects. Texture
memory is highlighted as a distinct component, because in hardware accelera-
tors it is often implemented with dedicated memory embeddedin the accelerator
itself. A higher rasterizing performance can be attained using this approach in-
stead of accessing texture data in the main system memory. Software engines can
also benefit from this design, since the data in the texture memory can be spe-
cially formatted for optimal read performance. Using dedicated texture memory
requires a separate texture-uploading step, in which texture data is transferred
from application memory to the texture memory. [49 p. 72]

6. Pixel Operations: In some cases, more direct access to the framebuffer pixels
is needed. One example involves clearing the whole framebuffer to a particular
color before starting to draw new primitives. Some applications might also need
to read back a portion of the framebuffer for further processing. This pipeline
component enables such pixel-level operations. [49 p. 109]

3.5. OpenVG 1.x Rendering Pipeline

The overall structure of the OpenVG 1.x rendering pipeline is illustrated in Figure 8
[48 p. 4]. The different stages of the pipeline are:

1. Path, Transformation, Stroke, and Paint Setup: To begin drawing, an ap-
plication constructs one or more paths using OpenVG commands. Each path

31

Figure 8. The stages of the OpenVG rendering pipeline.

consists of one or more segments. These paths may be orientedby setting a
transformation matrix, which specifies how the viewer is positioned above the
drawing plane. The stroke and paint attributes can be set to control whether the
drawn shape is filled, or only the outline of the shape is drawn, or both. Stroking
also controls the thickness of the shape’s outline, while painting defines the color
or pattern used to draw the shape. [48 p. 5]

2. Stroked Path Generation: If the application specified that the drawn shape is
to be stroked, this stage generates a new virtual path that specifies the area inside
the shape’s outline. This way, the rest of the pipeline only needs to deal with
filling the area inside a path. [48 p. 5]

3. Transformation: This stage moves and transforms the path to correspond with
the transformation matrix set by the application. [48 p. 5]

4. Rasterization: Similar to the rasterization step in OpenGL ES, this stage cal-
culates which framebuffer pixels are inside the drawn shape. OpenVG also has
provisions to calculate partial pixel coverage values to perform high-quality an-
tialiasing. [48 p. 5]

5. Clipping and Masking: The drawn shape can be restricted to a particular area
of the framebuffer using a mask or a rectangular clipping region. This stage
removes the pixels that do not coincide with the mask or the clipping region. [48
p. 6]

6. Paint Generation: This stage calculates the color of each of the shape’s pixels,
based on what type of paint was used. The different types of paints are solid col-
ors, linear gradients, radial gradients and image patterns. This step is analogous
to the texturing and lighting functionality of the OpenGL ES. [48 p. 6]

7. Image Interpolation: If the drawn shape was an image, this stage performs
filtering to minimize the blockiness of the rasterized image. [48 p. 6]

8. Blending and Antialiasing: Finally, the produced pixels are mixed together
with those already in the framebuffer. Blending and antialiasing can be used

32

Figure 9. EGL provides a way to initialize resources for bothOpenGL ES and OpenVG
and coordinate their drawing with the platform’s native windowing system. It also
facilitates sharing of rendering resources across APIs.

to draw semitransparent shapes and to ensure that the edges of the shape are
smooth. [48 p. 6]

9. Framebuffer: Similar to OpenGL ES, the OpenVG framebuffer houses the fi-
nal rendered image. It also supports most of the equivalent pixel operations. In
addition, it supports a number of filtering operations such as blurring and convo-
lution. [48 p. 116, 121]

3.6. Native Windowing System Integration

OpenGL ES and OpenVG provide ways to draw vector graphics, but they lack the
ability to determine where the graphics should actually endup. Even if the application
is only interested in drawing on the physical display of the device, it still needs to use
an additional API to make that choice. This API is called EGL.The role of EGL in
relation to the graphics engines can be seen in Figure 9. Essentially, EGL is the glue
that binds the graphics engine to the platform’s native windowing system. For this
reason, EGL and other similar APIs are commonly called binding APIs.

EGL is used to prepare a data structure called the graphics context to APIs such
as OpenGL ES and OpenVG. The graphics context defines, for instance, the output
surface and its configuration for the graphics engine. The configuration of a surface
can be used to adjust the quality of the produced graphics. Among other things, it
specifies the number of bits of color fidelity to use when rendering and whether or not
use antialiasing to smooth the edges of geometric primitives.

EGL provides three different types of surfaces for application use. The most com-
monly used one is the window surface, which directly maps thegraphics to a window
in the underlying platform’s native windowing system. Window surfaces also use back
buffering, which is a way of ensuring that graphics do not appear on the screen until
the application indicates that the current frame is ready. This helps to eliminate flick-
ering graphics that would normally be seen if the screen is updated while the graphics

33

are still being drawn. When displaying graphics on the screen, a window surface is
usually the most straightforward choice. [50 p. 25]

The second surface type is a pixel buffer or pbuffer surface.A pbuffer is an off-
screen surface, and therefore graphics rendered to a pbuffer do not appear directly
on the screen. Pbuffers are typically used when a native windowing system is not
available, or when mixing rendered graphics with other graphics APIs that are not
explicitly compatible with OpenGL ES or OpenVG. [50 p. 24]

The final available surface type is the pixmap surface. Most windowing systems
provide a pixmap object, which is simply a picture that can bedrawn among the user
interface controls in a window. A pixmap surface is a specialtype of surface that can
direct the rendering output of a graphics engine to such a native pixmap. This pixmap
can then be used as a part of a graphical user interface. [50 p.30]

The different EGL surfaces and configurations have important implications for ap-
plication portability. Of the three surface types, only pbuffers are universally sup-
ported. Certain configuration features such as antialiasingmay not be available on
every platform. Applications written with portability in mind should therefore strive
to adapt in the absence of such features. Surfaces and configurations also have an ef-
fect on application performance. In general, window surfaces have significantly better
performance than other types of surfaces due to the fact thatthey are double-buffered
and therefore allow the graphics engine to asynchronously work on multiple frames at
once. Double-buffering ´ can also eliminate the overhead ofcopying the surface pixels
on the screen, as the display controller can simply display one of the buffers while the
graphics engine is rendering to the other one. [36 p. 261]

EGL can also be used to share certain types of resources amonggraphics engines.
For instance, a picture rendered with OpenVG could be used asa texture in OpenGL
ES. While this type of sharing could also be accomplished by explicitly copying the
OpenVG framebuffer pixels to an OpenGL ES texture, such an operation could incur
a significant synchronization penalty and pixel data transmission overhead between
the graphics engines. Therefore, applications should strive to use the functionality
provided by EGL for these purposes. [50]

3.7. Performance Factors

The relatively low level of both the OpenGL ES and OpenVG APIsprovides applica-
tions with a great deal of power in the form of control over thegraphics engine; the
application can decide what it should draw and when. This power, however, comes
with the added responsibility of making sure the rendering process is efficient. In
contrast to higher level scene graph APIs, in OpenGL ES and OpenVG it is the ap-
plication’s responsibility to make sure not to, for instance, waste processing cycles by
needlessly drawing complex geometry only to cover it later with other objects. This
fine grained level of control is the source of many performance and quality problems
in OpenGL ES and OpenVG applications.

The mapping from graphics content to performance is not a straightforward matter.
This is because the graphics engine is in effect a black box for the application; neither
OpenGL ES or OpenVG specifies the inner workings of the engine, but rather only the
inputs and outputs. The obvious benefit of this approach is that graphics engine ven-

34

Figure 10. On hardware rendering architectures, independent pipeline stages can work
on different graphics frames concurrently.

dors are free to experiment with novel rendering algorithmsto improve performance.
From the application developers perspective, a more undesirable effect is that partic-
ular graphics content will have a radically different performance profile depending on
the graphics engine used. Even with this degree of freedom, useful general guidelines
for better performance can be still defined.

Probably the most dramatic difference in performance can beseen between a
software-based engine and a hardware graphics engine. Software engines are often
limited by the speed at which they can rasterize pixels, especially at higher display
resolutions. On such architectures, it is advantageous to limit the graphics content
to its bare minimum. The old computer graphics adage that thefastest way to draw
something is to not draw it at all is as valid as ever.

Graphics hardware, on the other hand, may be able to draw primitives many orders of
magnitude faster, but their performance limitations mightalso be much more complex.
It is very important to realize the extensively asynchronous nature of GPUs. In addition
to the different pipeline stages working in parallel, the main application CPU is free
to do other processing while the GPU is busy rendering. This level of parallelism is
illustrated in Figure 10 [36 p. 106]. Notice how the level of parallelism extends to
cover a full frame instead of just one rendering operation. If the application performs
graphics operations that interfere with data dependence ofthe different pipeline units,
it may lead to the whole pipeline performing synchronously.If the pipeline in the
previous example was synchronous, its timeline would look similar to that of Figure
11 [36 p. 106]. The rendering throughput has decreased by a factor of four when
compared to the parallel scenario.

Possible ways to induce a data dependency to the pipeline include reading back
framebuffer pixels to the CPU memory, combining acceleratedvector graphics with
native window system rendering, or modifying existing graphics resources such as
textures or paints while they are being used. What makes theseoperations so treach-
erous is that on software renderers, they do not usually cause any unexpected drops in
performance, and thus the performance problems will only manifest themselves when
the application is moved to a platform with a graphics accelerator. However, due to
the high performance of GPUs relative to software implementations, an application
using synchronous commands might still perform better on such a platform, but the
full potential of the GPU would still not be utilized.

35

Figure 11. Introducing a synchronous dependency between pipeline stages causes a
major performance degradation as the units must wait for their predecessor to finish.

API design also has a big impact on performance. As APIs evolve, their design-
ers learn more about the performance impact of various architectural decisions and
often try to amend the design to improve the situation. The opposing force for this
process is the often quite justified desire to maintain backwards compatibility with
existing applications using the API. The end effect is that over time, APIs accumu-
late various methods of doing things, some of which are less efficient than others.
An article by Henning [51] highlights the delicate balancing act that API designers
must do between backwards compatibility versus API usability and performance. The
cost of rewriting existing applications and re-educating developers inhibits the ways a
backward-compatible API can evolve.

A representative illustration of this issue comes from the number of different ways
the vertices of an object can be specified in OpenGL. Traditionally, the vertices were
defined one at a time with a separate API call for each vertex:

1 glBegin(GL_TRIANGLES);
2 glVertex3f(0.0f, 0.0f, 0.0f);
3 glVertex3f(0.0f, 1.0f, 0.0f);
4 glVertex3f(1.0f, 1.0f, 0.0f);
5 glEnd();

It was soon realized that this method incurred a great overhead, especially when the
number of vertices was large. The issue was rectified with theintroduction of vertex
arrays, which can be used to specify the attributes of many vertices at once:

1 const GLfloat vertices[] = {
2 0.0f, 0.0f, 0.0f,
3 0.0f, 1.0f, 0.0f,
4 1.0f, 1.0f, 0.0f
5 };
6 glVertexPointer(3, GL_FLOAT, 0, vertices);
7 glDrawArrays(GL_TRIANGLES, 0, 3);

Here the vertex coordinates are first defined as a normal C array. The glVertex-
Pointer call is used to tell OpenGL where to find the array, and finally the geometry
is commonly drawn withglDrawArrays . With vertex arrays, the number of API

36

calls remains constant regardless of the number of vertices. However, when considered
in conjunction with a hardware accelerator, this solution is not ideal either. The prob-
lem is that each time the draw call is made, all the vertices have to be transferred from
CPU memory to the graphics accelerator. If the vertices specify geometry that does not
change from one frame to another, the copying operation is unneeded overhead. This
problem, in turn, was solved by adding the vertex buffer object mechanism:

1 const GLfloat vertices[] = {
2 0.0f, 0.0f, 0.0f,
3 0.0f, 1.0f, 0.0f,
4 1.0f, 1.0f, 0.0f
5 };
6 GLuint buffer;
7 glGenBuffers(1, &buffer);
8 glBindBuffer(GL_ARRAY_BUFFER, buffer);
9 glBufferData(GL_ARRAY_BUFFER, 9 * sizeof(GLfloat),

10 vertices, GL_STATIC_DRAW);
11 glVertexPointer(3, GL_FLOAT, 0, 0);
12 glDrawArrays(GL_TRIANGLES, 0, 3);

The vertex buffer object procedure also begins with a declaration of a regular C array
containing the vertex coordinates. On lines 7 and 8, a vertexbuffer object is created
to house the array and activated. A vertex buffer object is essentially equivalent to a C
array, except that it can be stored in dedicated graphics memory for better performance.
The glBufferData call on line 9 is used to transfer the vertex data into the vertex
buffer object. Finally, the vertex buffer object is indicated as a source of vertex data
with glVertexPointer and the geometry is drawn withglDrawArrays .

From these examples it is apparent that the more efficient a method of drawing ge-
ometry is, the more cumbersome and counterintuitive it usually is from the developer’s
perspective. Especially in the case of disruptive features, such as vertex buffer ob-
jects, which have been retrofitted to an existing API withoutchanging the underlying
design, the end result can be quite complicated to grasp. It is no wonder that some
desktop OpenGL applications are still written using the first approach listed above,
because it is simply the easiest way of getting things done.

When the OpenGL ES was being crafted, the inefficient nature ofthe vertex speci-
fication API calls was understood, and therefore they were not included. Both vertex
arrays and vertex buffer objects are, however, available inOpenGL ES and the pro-
grammer should be aware of their differences.

We have now introduced the main vector graphics APIs for thisthesis: OpenGL ES
and OpenVG. The reader should now be familiar with the way graphics are constructed
in both APIs as well as some general factors that affect the performance of vector
graphics applications. Next, we discuss the set of tools we have designed to assist in
solving vector graphics quality issues.

37

4. GRAPHICS QUALITY ANALYSIS TOOLKIT
REQUIREMENTS

This chapter introduces the detailed requirements for eachcomponent of the Graphics
Quality Analysis Toolkit. We begin by examining the software environment of each
component. This is followed by the introduction of the core use cases, which are used
to derive the detailed design of the software.

4.1. Functional Requirements

As illustrated in Figure 5 on page 21, the central componentsof the Graphics Quality
Analysis Toolkit are:

1. aTracer for capturing all OpenGL ES and OpenVG graphics commands exe-
cuted by a Symbian application

2. aTrace Player for repeating the captured graphics commands

3. aTrace Analyzer for examining and manipulating the graphics command trace
files

4. Instrumented OpenGL ES and OpenVG graphics enginesfor extracting de-
tailed content statistics from trace files

As the Tracer, the Trace Player and the Trace Analyzer are allused in different
environments under different circumstances, we discuss the functional requirements
of each component separately.

4.1.1. Tracer

The tracer is used to extract API call traces from applications. The main targeted
platform is the most recent iteration of the Nokia smartphone system software, the
S60 3.x series, which is based on Symbian OS 9.x. Some specialaspects of Symbian
OS 9.x must be taken into account when designing the tracer. These are discussed in
more detail in the next chapter, which focuses on the low level design of the toolkit
components.

The tracer must be able to capture all API commands and the associated data ex-
ecuted by OpenGL ES 1.1 and OpenVG 1.0 applications. However, it must also be
generic enough to be extensible to other similar C APIs with moderate work. The
design should acknowledge that multiple graphics applications may be running simul-
taneously and any of the applications may be multithreaded.

An important requirement for the tracer is that it must not require access to or mod-
ification of the source code of the traced application. The source code of a debugged
application may not always be conveniently available due tolicensing constraints or
other limitations. Furthermore, changes to the application source code imply that the
application must be recompiled. This is not always practical, as some system software

38

might have unique build environment requirements. If the tracer was based on the
modification of the application source code, the design might easily preclude tracing
applications written in other languages, such as Java. Therefore, the tracer must be
designed to work with completely unmodified applications.

Tracing should be a non-intrusive operation for the target application. While some
performance degradation is expected, the functionality ofthe application must not be
compromised. A necessary compromise is that if the application is exhibiting a quality
issue that is very critical to timing, the tracer may not be able to capture a reproducible
representation of it due to the introduced overhead.

The constraints of the mobile runtime environment imply that the tracer should strive
to minimize its memory and CPU footprint. Tracing an application should not con-
siderably hinder its performance, so that interactive applications remain usable. The
memory usage of the tracer should also be bounded when required. Due to the possi-
ble high volume of trace data, it should also be possible to specify whether the trace
should be saved to a file or relayed directly to a remote storage device. These and
other aspects of the tracer must be configurable without having to rebuild the system
software.

4.1.2. Trace Player

The Trace Player has a dual role in the toolkit configuration.Firstly, it is used directly
to play back recorded trace files, possibly on a different graphics engine than the one
used to record the trace. The second use is to play back recorded trace files using
an instrumented graphics engine to obtain detailed contentstatistics. Due to these
circumstances, the Trace Player must be able to run on both Symbian OS 9.x and
Microsoft Windows XP.

The Trace Player must reproduce the exact API calls made by the original applica-
tion. While some minor variations in memory addresses and other details are allowed,
the intention of this requirement is that the sequence of graphics operations of the orig-
inal application must be reproduced with enough accuracy toproduce identical output.
To enable reliable benchmarking, the performance of the player must be well under-
stood.

Matching the requirements of the tracer, the Trace Player must support both OpenGL
ES 1.1 and OpenVG 1.0, with similar provisions for adding support for additional C-
based APIs.

4.1.3. Trace Analyzer

The Trace Analyzer is used to examine and edit recorded traces in a workstation envi-
ronment. The tool is primarily run in a Microsoft Windows XP environment.

The main purpose of the Trace Analyzer is to assist in pinpointing application quality
issues in recorded trace files. The aim is not to make the analysis process completely
automatic, as that would limit the tool’s utility in cases that were not considered during
the design phase. Instead, the analyzer should strive to be ageneral purpose utility for
extracting as much information as possible from trace files.This information should

39

also be transferable to other programs in various formats from low level raw data to
high level reports. The Trace Analyzer also allows for the editing of trace files and
extracting logical parts of traces to form new ones.

The user interface of the first iteration of the Trace Analyzer tool is command line-
based. This decision was made on the grounds that it is first more important to con-
centrate on the low level functionality of the analyzer. Designing a graphical user
interface is not feasible until the major usage patterns of the tool are explored in prac-
tice. A graphical user interface can be later implemented tocomplement the command
line mode once the design of the tool has stabilized.

Pervasive automation support is a major requirement of the Trace Analyzer. While
this is in part provided by the command line interface, a morepowerful programmatic
scripting interface must also exist.

The Trace Analyzer employs the Trace Player to extract low level content statistics
from a recorded trace file. The design must define a way to orchestrate this operation
in coordination with various OpenGL ES and OpenVG engines. Adding new custom
content features should also be possible with relative ease.

4.2. Non-functional Requirements

The general functional requirements for the toolkit can be summarized with the fol-
lowing principles:

• Completeness—each component of the analysis suite should aim for complete
coverage of the respective problem field. For the tracer, this means that every
API call and associated parameter is properly saved to the trace file. Similarly,
the Trace Player should reproduce the original applicationbehavior as exactly as
possible.

• Invariance—to ensure consistent behavior, all parts of the suite should minimize
the side effects of their operation. In the context of tracing, this means that the
original application behavior is not altered with the introduction of the tracer,
other than with possibly reduced performance. In the Trace Analyzer, editing a
trace file should not inadvertently alter the ordering or function of the API calls.

• Portability —in the interest of portability, a common requirement for all compo-
nents is that the amount of platform dependant code must be minimized. Porta-
bility also concerns trace files in the sense that they must betransferable from
one system and graphics engine to another when applicable.

4.3. Use Cases

The Graphics Quality Analysis Toolkit design is derived from a number of concrete
use cases:

1. Unsatisfactory application performance

2. Visual error in application

40

3. Application quality analysis

4. Graphics engine benchmarking

5. Graphics content analysis

These cases are a generalization of actual tasks and supportrequests that have been
assigned to the Nokia Display & Graphics Software team. The team is responsible
for delivering graphics technology to other organizational units in the form of graphics
engines, performance testing, and support. This responsibility places the team in a very
central role when it comes to the graphical quality and performance of applications.
A common situation is that a given application is suffering from a quality problem,
which is assigned to the team as a defect in the graphics engine. The graphics team
must then investigate and classify the error, leading to a great workload with traditional
methods. In the following use case definitions, we demonstrate how this workload can
be reduced with the aid of the Graphics Quality Analysis Toolkit.

4.3.1. Unsatisfactory Application Performance

The first use case focuses on an application suffering from poor performance. The
reason for the poor performance is unknown. The applicationin question is using
either OpenGL ES or OpenVG.

The goal of this use case is to identify the reason for the poorperformance as quickly
and easily as possible using tools that have been made for exactly that purpose. Using
these tools, the engineer examining the issue should be ableto clearly communicate
the cause for poor performance to the application’s owner.

Experience has shown that trying to assess the reason for poor graphics performance
of an application using a debugger is time consuming and frustrating. Not only must
the engineer discern the internal behavior of the application from the source code, he
or she will also have to make judgments about the executed graphics API calls one
by one. Debugging interactive applications is also difficult because the application is
halted whenever the debugger is triggered. Often the sourcecode might not be read-
ily available, introducing the additional challenge of deciphering application behavior
from assembly code.

Using a profiler to approach the issue may not always be helpful, as profilers only
work at the level of function calls. Individual function calls convey little information
about the graphics content itself. The profiler only indicates how much time is spent
inside a particular function, but the actual reason for the processing load might be a
completely different function call executed earlier. The time spent executing a particu-
lar graphics function therefore depends on both the parameters passed to that function
and the state of graphics engine at that point in time.

The first step in solving the quality problem is to classify itinto one of the four
categories described in Section 2.6 on page 17. This classification is the base for
guiding further optimization work. If the error is found to reside in the application, the
process will also provide valuable information for solvingthe error.

The work flow of this use case is illustrated in Figure 12. The process begins by
running the problematic application on a mobile device or a PC-based emulator. The

41

Figure 12. In the first use case, an application suffering from a performance problem
is traced and the problem is categorized based on various types of trace analysis.

graphics commands of the application are captured using thetracer. Depending on the
application, one or multiple traces may be taken. Then, the generated trace files are
transferred onto a workstation for analysis. The Trace Analyzer is used to produce
a number of reports and statistics concerning the graphics content. These figures are
finally used to categorize the quality problem.

4.3.2. Visual Error in Application

In the second use case, an OpenGL ES or OpenVG application suffers from a visual
error or a crash in the graphics engine. A failure in the application code is the respon-
sibility of the application developer and solving it is outside the scope of this thesis;
our objective is merely to indicate which component is causing the error.

The goal in this case is to quickly identify and isolate the error. By error isolation,
we mean reproducing the error with the bare minimum of required API calls. If an
error is simplified in this manner, finding the cause for the error in the graphics engine
is much easier.

Traditionally errors of this kind are solved using a debugger or source code inspec-
tion. While a debugger is useful in many cases, it is easily defeated by errors that are
hard to reproduce by using the application. Such errors easily lead to much work trying
to narrow down the error by repeatedly triggering it. Sourcecode inspection is also an
ineffective tool for large or complicated applications.

The workflow for this use case is illustrated in Figure 13. At first, the problematic
application is traced on a mobile device. The trace is then brought into the Trace
Analyzer, which is used to isolate the error. The error is isolated by first extracting the
API calls for the frame exhibiting the error into a new trace file. This new file is then
played back on the original device to verify that the error still appears. If the error does
not reappear, a different call sequence is selected from theoriginal trace until the error
reappears.

Once the error is isolated to a minimal API call trace, it is used for three different
purposes: firstly, it is used to verify with a reference engine that the error is indeed
caused by the graphics engine; secondly, it is used to debug the error in the graphics
engine; finally, the trace is converted into a C source file that replicates the behavior of

42

Figure 13. The second use case focuses on an application experiencing a rendering
error. The application is traced, the error is isolated fromthe trace and analyzed further
with a reference graphics engine, a debugger and as a standalone C source file.

the trace. As the C file is completely independent of the rest of the analysis toolkit as
well as the original application, it can be given to the graphics engine vendor for further
analysis. Additionally, a regression test case is created using the C code to guarantee
that the same error does not reappear in a future version of the graphics engine.

4.3.3. Application Quality Analysis

The third use case is about assessing the quality of a vector graphics application. Such
analysis should be performed even if the application in question is not suffering from
an obvious performance problem. The reason for this is that the analysis can highlight
certain areas that can be improved to conserve battery, CPU, or memory usage.

The technique outlined in this use case is not meant to displace traditional methods
of quality analysis such as application profiling or code reviewing; the intention is to
complement such methods by providing more information to guide further optimiza-
tion work.

The workflow for this use case, as illustrated in Figure 14, begins with recording
one or multiple graphics traces from the examined application. In general, multiple
traces should be created if there are great variations in theapplication’s graphics under
different circumstances. These traces are then brought into the Trace Analyzer, which
is used to produce detailed content statistics on the graphics content.

An engineer analyzing the application can be interested in awide variety of statistics
about the graphics content, but in general the focus is on figures that can be used to
judge the complexity of the graphics content against the capabilities of the platform and
graphics engine. Some examples of such measures are the level of overdraw versus the
platform fill rate capacity, the number of transformed vertices versus the transformation
capacity, and the texture upload traffic versus the system memory bus capacity. The
system should make it relatively easy to extract other similar statistics.

In addition to statistics, the generated reports also include information about the
executed API call patterns. Features such as platform dependant operations, inefficient
procedures, redundant call sequences, and other inefficiencies should be highlighted.

43

Figure 14. In the third use case, an otherwise well-behaved application is traced and
analyzed in terms of vector graphics quality. A set of development recommendations
is derived from the analysis.

Based on the extracted information, the engineer is able to give clear development
recommendations for the application developer.

4.3.4. Graphics Engine Benchmarking

The fourth use case switches the focus from applications to graphics engines. A new
graphics engine needs to be benchmarked to estimate its fitness for rendering the graph-
ics of a particular application.

Graphics engines are commonly benchmarked with a combination of dedicated syn-
thetic benchmarking programs and real applications. Synthetic benchmarks are prob-
lematic, because they are generally written by graphics experts and therefore do not
share the same inefficiencies that real applications sometimes do. On the other hand,
using real applications for benchmarking is troublesome, because the application code
usually needs to be modified to implement automated reliablebenchmarking runs.
While such modifications can be done for a single test run, it quickly becomes a chore
if the number of applications is increased. Furthermore, inearly stages of develop-
ment, new graphics engines commonly run on prototype hardware, which might not
support the running of regular system applications.

In this case, the workflow begins creating a trace from the application to be used
for benchmarking. The analyzer provides two ways of creating benchmarks. Firstly,
the Trace Player can be used to directly play back a specially-created benchmark trace
file. This method is straightforward and flexible, since the Trace Player can readily
play back any valid trace file. A possible drawback with this method is that the process
of reading and interpreting the trace file during the benchmark may skew the results.
The second way is to convert the benchmark trace file into C source code, which is then
compiled and executed to obtain the benchmark results. Thismethod is more involved,
since the benchmark must be recompiled each time the trace ischanged. The results
obtained with this method, however, are likely to be more accurate, since the compiled
benchmark has less overhead during runtime than the Trace Player. Furthermore, C-
based benchmarks have fewer system dependencies in comparison to the Trace Player.
In this use case, we will explore both ways of creating benchmarks.

44

Figure 15. The fourth use case consists of benchmarking a newgraphics engine using
existing application content extracted via the tracer.

Figure 16. In the fifth use case, the graphical content of an application is analyzed in
detail.

The general process for this use case is illustrated in Figure 15. The output of this use
case is an estimate of how well the new graphics engine will perform when rendering
the application graphics content.

4.3.5. Graphics Content Analysis

The final fifth use case demonstrates the in-depth content analysis functionality of the
toolkit. This functionality is presented with the hope thatit will be useful to more
detailed content analysis, clustering, and performance estimation work in the future.

An overview of this use case is shown in Figure 16. As before, aselected application
is traced to produce a trace file of graphics operations. The trace file is then analyzed
to extract high and low level content features in the form of compiled reports and raw
data. Instrumented engines for OpenGL ES and OpenVG will be used to calculate
some of the statistics.

The objective of this use case is to demonstrate a systematicapproach to gaining an
in-depth understanding of typical graphics content. This knowledge could be used to:

• Guide the development and optimization of graphics engines. Low level statis-
tics on real application graphics content are valuable input to this work.

• Cluster different applications into representative performance classes based on
graphics content complexity. This can be used to quickly estimate the perfor-
mance level of an application on a piece of graphics hardware.

45

• Create synthetic benchmarks for graphics engine performance estimation. The
objective of these benchmarks is to overcome the limitations of using traced
application content directly for benchmarking as presented in the previous use
case. Synthetic benchmarks can be more easily parameterized to produce differ-
ent kinds of graphics processing loads.

Previously, this kind of data was based on a limited number ofapplication studies
and anecdotal information from content developers. The process outlined in this use
case defines a practical means of obtaining this information.

We have now presented the requirements and essential use cases for the Graphics
Quality Analysis Toolkit. The following chapter provides insight into how these re-
quirements are translated into a software implementation.

46

5. GRAPHICS QUALITY ANALYSIS TOOLKIT
ARCHITECTURE

Having defined the requirements and the core use cases for theGraphics Quality Anal-
ysis Toolkit, we are now ready to proceed to the detailed design and architecture of the
software components. This chapter focuses on the design choices, justifications, and
limitations of each component.

5.1. Tracer and Trace Player Generator

Early in the design phase of the Tracer and Trace Player it became clear that both com-
ponents would consist of large amounts of repetitive code. The OpenGL ES 1.1 and
OpenVG 1.0 APIs have 187 and 84 functions respectively, and each function requires
a corresponding entry in the tracer and Trace Player. Writingthese functions by hand
would be tedious and error-prone. To minimize the implementation effort, we decided
to employ a code generator to create most of the Tracer and Trace Player code.

A code generator generally works by reading a compact domain-specific representa-
tion of the desired system and creating a corresponding program in source code form.
This source code can then be fed into a normal compiler to produce an executable pro-
gram. Code generators are extensively used for creating parsers, state machines, and
other applications that are too complex to be written by hand.

The operation of the code generator in our system is illustrated in Figure 17. First,
a set of API configuration directives combined with platform-specific information is
used to create a tracer project file. This project file is then fed into the code generator
to produce both the Tracer and the Trace Player for the targeted API and platform. The
tracer project is also used to pass the API configuration to the Trace Analyzer.

In addition to source code, the generator also produces platform-specific build sys-
tem files that are used to compile each generated component. These files are created
for all the respective build systems of Symbian OS, Microsoft Windows, and Unix
derivatives. Build file generation was especially useful forSymbian OS, since com-
piling applications targeting that platform requires writing a large number of resource
files in addition to the source code itself.

5.1.1. API Configuration

All components of the toolkit require in-depth knowledge about the targeted API. This
information is derived from a number of sources to make up thetracer project file. The
most essential bit of information is the list of API functions including their parameters
and types. It is specified in the form of a standard C header file. Additionally, a separate
configuration file is used to define attributes of the API, suchas:

• Which functions trigger rendering, frame swapping or API termination.

• The state model of the API and how function parameters are mapped to it. See
Section 5.2.5 on page 55 for further information.

47

Figure 17. API- and platform-specific configuration data is combined to produce a
project file, which is in turn used to generate the Tracer and the Trace Player.

• Which functions are extension functions and require specialprocessing. See
Section 5.2.8 on page 60 for further information.

• What kind of platform-specific objects the API employs.

• Rules for calculating the sizes of array parameters.

An excerpt from the OpenGL ES configuration file for theglLightfv function is
shown in Figure 18. TheglLightfv function is used to control different parameters
of OpenGL ES lights, such as their color or position. The particular example shown
in Figure 18 specifies how each of the three parameters of the function,light, pname,
andparams, should be processed by the Tracer and the Trace Player. As the first two
parameters are simple integers, the configuration only indicates where they should be
mapped in the state model. The quoted strings specify state model paths. Our state
model system is described in more detail in Section 5.2.5 on page 55. The final param-
eter, however, is more interesting, as it is an array. The size of that array depends on
which light attribute is being changed, as different attributes require a different num-
ber of numeric values. As the changed attribute is chosen viathepname parameter, the
number of elements in theparams array can also be determined through that parameter.
The configuration shown in Figure 18 therefore specifies, that by default theparams
array will contain 4 elements by default, except if thepname parameter equals the nu-
meric constantGL_SPOT_DIRECTION . In this case, the array will have 3 elements.
Similar conditions are repeated for each possible variant of the pname parameter to
cover all possibilities.

As the pattern of using different parameters to specify array sizes is very common
in EGL, OpenGL ES, and OpenVG, we designed the configuration syntax to provide a
compact representation for such cases. While this system covers most array parameters
in these APIs, some special cases, such as EGL attribute lists, require hand-written
code for calculating the array size. In practice, we found these cases to be rare.

Several configuration directives are also required for compiling the generated com-
ponents. On Symbian OS, the symbols in dynamically linked libraries are not found
by names but by ordinal numbers [8 p. 388]. This means that thetracer must know the
ordinal number of each API function in order to find the corresponding function in the
system graphics engine. The same information is also neededfor compiling the tracer,
because binary compatibility requires that the ordinals ofits exported functions must

48

1 glLightfv:
2 {
3 light: "ctx.light"
4 pname: "ctx.light.parameter"
5 params:
6 {
7 state: "ctx.light.parameter.value"
8 metatype(class = "array", size = "4"):
9 [

10 size(condition = "pname", value = "GL_SPOT_DIRECTION",
11 result = "3")
12 size(condition = "pname", value = "GL_SPOT_EXPONENT",
13 result = "1")
14 size(condition = "pname", value = "GL_SPOT_CUTOFF",
15 result = "1")
16 size(condition = "pname", value = "GL_CONSTANT_ATTENUATION",
17 result = "1")
18 size(condition = "pname", value = "GL_LINEAR_ATTENUATION",
19 result = "1")
20 size(condition = "pname", value = "GL_QUADRATIC_ATTENUATION",
21 result = "1")
22]
23 }
24 }

Figure 18. Example configuration directives for theglLightfv OpenGL ES func-
tion. The settings shown here specify how the three parameters for the function are
processed by the Tracer and the Trace Player; most notably, the pname parameter is
used to determine the size of theparams array.

match those of the original graphics engine. In our system, these ordinal numbers are
parsed from the same DEF files used by the Symbian OS build system.

5.1.2. Working with Generated Code

The use of code generation greatly simplified the task of implementing both the Tracer
and the Trace Player. Both are complex pieces of software, which required numerous
refactoring steps to reach their present state. Without code generation, such iterative
improvements and wide-reaching modifications would have been very tedious to man-
ually apply into the code base. We routinely had to make changes that involved modi-
fications to Tracer and Trace Player code for every API function. The most significant
advantage brought by the code generator is the ease of addingsupport for new C-style
APIs; a minimal Tracer and Trace Player can be generated almost directly from the
header file of the API.

49

Figure 19. a) A regular Symbian graphics application is dynamically linked to the
system graphics engine. b) The tracer masquerades as the system graphics engine by
providing a matching DLL interface to the client application. This arrangement enables
the tracer to copy all executed rendering commands to the trace file.

The downside of code generation is the introduction of a new level of abstraction
into the system. Debugging was somewhat hindered by the factthat the mapping from
the API configuration to the final generated code was not always straightforward. An
important design principle is that the generated code must not be modified by hand. If
the code is changed after generation, the changes must be redone each time the code is
generated again. The need for very specific improvements to the generator output was
handled through the addition of code hooks or placeholders.The API configuration
can use these hooks to replace specific parts of the generatedcode with customizable
code. This functionality is used to inject hand-written code into the Tracer or the Trace
Player to, for instance, save the contents of enabled vertexarrays in theglDraw-
Elements OpenGL ES function.

5.2. Tracer

The tracer is responsible for saving each executed graphicsAPI call and the associated
data to a trace file. This means that it must find a way to position itself between the data
flow from the application to the graphics API. To do this, the tracer exploits the fact that
on Symbian and other modern operating systems, applications are dynamically linked
to the graphics engine, as seen in the top half of Figure 19. The graphics engine DLL,

50

dynamic link library, is renamed, and the tracer takes its place. The tracer provides
an identical DLL interface to the application in order to make itself indistinguishable
from the original graphics engine. This setup, as illustrated in the bottom half of Figure
19, guarantees that every graphics API call executed by the application ends up in the
tracer entry point for that particular function.

Due to the security limitations of Symbian devices, the tracer is not be a user-
installable program, since the graphics engines and other system software on a mobile
phone cannot be overridden. For this reason, the tracer mustbe integrated directly into
the system software image of the phone.

Function-level Tracing

Each API call entry point in the tracer is responsible for calling the respective function
in the graphics engine and saving all data related to the function, including its return
value, to the trace file. An example trace function is shown inFigure 20. In the
code, a new event is first opened for the current function call. Each function call
made while the tracer is active maps to an event in the trace file. Then the underlying
graphics engine function is called with the original parameters. The function call is
also surrounded by timing code that measures how much time isspent in the graphics
engine. Finally, the original function parameters are added to the event and the event
is closed.

The function parameters are saved only after calling the original function because
some of the parameters might get modified during the engine function call, and the
trace file should contain the final values of such parameters.The function might also
have a return value that needs to be saved, and return values are only available after the
engine function has been called.

Data Types

In the example case shown in Figure 20, all the function parameters were simple
floating point values. This is not the case, however, with thefull spectrum of func-
tions found in OpenGL ES and OpenVG. The parameter types fallunder three distinct
classes: basic types, arrays, and opaque objects. Each of these classes requires special
consideration to guarantee that the proper information is written to the trace file.

The first class of basic types is the simplest. It encompassesall atomic types, such as
integers and floating point numbers of varying precision. The majority of function pa-
rameters fall under this class. Their serialization only requires that a standard encoding
is used when saving and loading the values.

The second class – array parameters – contain sequential data instead of a single
value. In C, the value of an array parameter is a pointer to the memory block containing
the array data. The tracer must acknowledge this fact by serializing the data contained
in the array rather than the memory address, because the address would be meaningless
when read back from the trace file. Serializing the array datais a simple matter of
copying it to the trace file, as long as the length of the array is known. In C, the length
of an arbitrary array cannot generally be deduced without additional information. In

51

1 void glColor4f(GLfloat red, GLfloat green,
2 GLfloat blue, GLfloat alpha)
3 {
4 /* Establish a new tracer event */
5 TREvent* event = trBeginEventByIndex(0, 33);
6
7 /* Call the underlying graphics engine function */
8 trBeginCall(event);
9 TR_CALL4(void, event->function,

10 GLfloat, red, GLfloat, green,
11 GLfloat, blue, GLfloat, alpha);
12 trEndCall(event);
13
14 /* Save the function parameters */
15 trFloatValue(event, "red", red);
16 trFloatValue(event, "green", green);
17 trFloatValue(event, "blue", blue);
18 trFloatValue(event, "alpha", alpha);
19
20 /* Signal the end of the event */
21 trEndEvent(event);
22 }

Figure 20. Example tracer code for theglColor4f OpenGL ES function. The
tracer first calls the corresponding function in the system graphics engine and then
saves the parameters of that function to the trace file.

some cases, this information is not readily available and the tracer must resort to more
advanced techniques. These circumstances are discussed inmore detail in Section
5.2.5.

The tracer only supports homogeneous arrays, in which each array element is of the
same type. This is sufficient because most arrays in the targeted APIs are homoge-
neous, and those that are not, can be simply saved as arrays ofraw bytes.

The third class – opaque parameters – are values that carry more meaning than just
their numerical value. An example of such a value is the reference to a native window,
which is passed to theeglCreateWindowSurface function. The reference is
used to assign the newly created window surface to a particular window created by
the application. To save this information to the trace file, the tracer does not write out
the reference itself. Instead, every relevant detail aboutthe window, such as its width
and height, is written. This information can be later used toconstruct an equivalent
window when playing back the trace. This approach also makesit possible to transfer
traces from one system to another, where the implementationof native resources such
as windows may be completely different.

52

5.2.1. Platform Security

To lower the probability of viruses, Trojan horses, and other malware infecting mobile
devices, version 9 of Symbian OS introduced a mandatory access control mechanism
called Platform Security. From an application’s point of view, Platform Security re-
stricts access to certain system files and services based on the assigned capabilities
of the application. Every application binary and shared library running on the de-
vice is digitally signed, and the set of capabilities assigned to an application cannot
be changed after the application is signed. Several different signing certificates are
defined, each granting a different level of capabilities. [8p. 315]

Platform Security also controls how application code can belinked together during
runtime. The governing rule is that an application with a certain set of capabilities
cannot use a DLL with fewer capabilities. This is done to prevent a privilege escalation,
where a DLL could get more capabilities than it was originally assigned. [8 p. 321]

The implications of Platform Security for the tracer are two-fold. Firstly, the trace
files may not be written into restricted system directories.For this reason, the tracer
reads a runtime configuration file, which can be used to override the trace file loca-
tion. Secondly, to guarantee that all vector graphics applications on the device remain
working even after the tracer is installed, the tracer DLL must be given the highest
level of capabilities. Furthermore, due to Platform Security, system software cannot
be overridden by user installable applications. These special requirements imply that
the tracer must be installed directly into the mobile device’s system software image.
This makes installing the tracer somewhat difficult, because the user must have access
to a system software development environment. This factor is mitigated by the run-
time configurability of the tracer, which guarantees that generally there is no need to
alter the tracer after installation. For instance, a configuration file can be used to limit
the tracer to only certain applications or graphics APIs. Furthermore, if needed, the
tracer can be built as an unprivileged DLL under a name different to that of the system
graphics engine. This tracer DLL can then be used by linking the examined program
directly to it.

5.2.2. Performance Considerations

In the following sections, we will detail the optimizationsused by the tracer in order
to meet the required level of performance.

Write Buffering

Maintaining an acceptable level of performance while tracing applications is greatly
dependant on the tracer’s ability to write out data to the trace file at a sufficient rate.
Our initial approach was to use a synchronous write operation. As Symbian only
performs write caching for the file allocation table of the file system and not the actual
file data [8 p. 377], the performance of this method was found to be unacceptable. We
then implemented a write buffer mechanism, which gathers a large amount of data into
a memory buffer and writes the whole buffer into the output file at once. This brought

53

performance to an acceptable level, but the synchronous buffer flushing caused a long
pause whenever the buffer became full. This prompted the implementation of a fully
asynchronous buffering mechanism, in which a dedicated worker thread collects data
into an array of buffers in a round-robin fashion and flushes the filled buffers into the
output file. With this solution in place, the tracer is able tosustain sufficient write
performance, as long as the average data bandwidth does not exceed the capabilities of
the output device. This solution does have a memory usage trade-off due to the buffer
allocations, but the size and number of buffers can be adjusted as needed. The tracer
can also be run in a completely synchronous manner to guarantee a complete trace in
the case of a graphics engine crash.

Reducing Redundancy

In addition to improving write performance, it can also be beneficial to minimize the
amount of data being written. In our first trials, a two minuteOpenGL ES animation
with roughly 30 000 rasterized triangles per frame generated a 250 megabyte trace file.
This was clearly not practical, given the limited storage space of a mobile phone. A
commonly observed property of animated graphics is a high level of frame coherence,
that is, a frame tends to resemble the one preceding it. On theAPI call level, this
means that nearly identical sequences of API calls are repeated from frame to frame.
We found that the biggest contributors to the trace file size were the various arrays used
to describe vertex coordinates, texture images, triangle indices, and other similar struc-
tures. We found that a very high percentage of the trace file data consisted of repetitive
array data. Based on these findings, it made sense to implementa compression method
to reduce the amount of redundant trace file data.

Array data compression in the tracer is based on the observation that graphics ap-
plications tend to keep constant array data in the same physical array; if the data does
not change, then there is little point in moving it to a different array. For example, if
an application draws a mesh using vertices stored at memory address4000, a future
draw call referencing vertices at memory address4000 is likely to refer to the very
same vertices. The compression scheme is based on the idea that instead of saving the
vertex data again, we simply state that the data is the same asin the previous draw call.

Obviously, by only comparing memory addresses, the tracer would fail to notice if
the application had in fact modified the array contents afterit was saved to the trace
file. This is why the tracer must, upon encountering a previously seen array, verify
that the array contents have not been modified before markingit as a duplicate. If
the array has changed, the tracer must write out its new contents to the trace file.
Ideally, the tracer would mark the memory region occupied bythe array in a way that
it could automatically detect any modifications to it. Unfortunately, Symbian OS does
not provide such functionality, and therefore the tracer must track array modifications
explicitly.

Our initial attempt at detecting array modifications was to calculate a message digest
value for the array contents and compare that to the previousvalue. The problem with
this approach was that a simple message digest algorithm wasprone to collisions, in
which the same digest value was assigned to different array data, while a more complex
algorithm was computationally too intensive.

54

A more complete array tracking algorithm would need to make internal copies of
each encountered array in order to later check whether the array was modified. The
algorithm implemented in the tracer is a compromise in the sense that it only tracks
changes to arrays that have been encountered at least twice.In practice, this is a work-
able solution, since replicating the same array a maximum oftwo times into the trace
file does not constitute a major overhead. The array tracker also allows for limiting the
array cache size to ensure that system resources are not exhausted by the algorithm.

While the array tracking method described here is effective for most applications,
it fails to reduce the trace data volume for applications that dynamically generate ge-
ometry that is different for each frame. An example of such anapplication is one that
renders graphics using dynamic objects, which only containthe visible set of geom-
etry at each point in time. Since the structure of the compound objects changes very
frequently, the tracer must write each encountered variation to the trace file. This leads
to poor performance. Fortunately, we have found very few such applications, so the
impact of this limitation is relatively minor.

5.2.3. Portability

The C language was chosen for implementing the Tracer and theTrace Player. This
was a natural choice, since the targeted APIs were also C-based. Using C also made it
easier to port the software to new operating systems.

The tracer is an unusual software component in the sense thatit does not have a sin-
gle entry point or an initialization sequence. In contrast,normal executable programs
have one main function, which is invoked by the operating system when the program is
started. Similarly, dynamic libraries commonly define a single initialization function,
which must be called prior to any other function in the library. Since the binary API
of the tracer must match that of the traced DLL, any special initialization sequences
cannot be relied on.

To overcome this limit, the tracer simply checks a global initialization flag at the
start of every API call invocation; if the flag is not set, the tracer has not yet been
initialized for the particular thread. The problem with this approach is that Symbian
does not directly support writable static data in libraries[45 p. 38]. This limitation
was worked around by using a global data API provided by Symbian, although at the
minor cost of an extra kernel mode switch upon each traced APIcall.

In addition to global data, other services such as file systemaccess, memory alloca-
tion and library symbol lookup are very dependant on the underlying operating system.
For this reason, such services were encapsulated in a small utility library inside the
tracer to keep the rest of the code platform neutral.

5.2.4. Trace Files

Trace files are essentially serialized streams of function calls and their associated pa-
rameters. The tracer can write trace files in both text and binary format. The text format
is provided as a quick debugging aid, since it does not require a separate conversion
step for obtaining a human readable call trace. To simplify the design of the Trace

55

Player and the Trace Analyzer, importing traces in plain text format is not supported
by our system.

The binary trace file format is a low-overhead tokenized stream encoding, which
can be read and written by all components of the toolkit. The format supports a simple
phrase book compression scheme, where repeating data sequences can be assigned
a shorter identifier. The encoding is designed to be self-contained in the way that
it is not tightly coupled with any specific API configuration.While such coupling
could have helped to somewhat reduce the trace file size, it would have also meant that
changing the API configuration would have invalidated all traces taken with the old
configuration. Explicitly maintaining backwards compatibility with the old format or
converting existing trace files to the new format was not seenas a viable alternative, as
API configuration changes were very frequent, especially early in the development.

The trace files can be saved to different output devices as needed. On a mobile de-
vice, the user can choose between a RAM disk, the built in flash memory of the device,
a memory card or a high throughput proprietary debug interface to a host computer.

5.2.5. State Tracking

State tracking is the process of keeping track of the graphics engine state throughout
the execution of an application. State tracking is needed for two purposes in our sys-
tem. The first is to enable the tracer to save all application data passed to the graphics
engine. The second use is to model the relative dependenciesof the API calls, making
it possible to extract a set of frames from a longer trace and perform in-depth analysis
of the call trace.

Our aim was to create a generic state tracking solution that is not limited to either
OpenGL ES or OpenVG. Instead of explicitly modeling the complete API state, the
emphasis was set on the dependencies between various API calls due to the special
requirements of the analysis tool. An important property was that the state tracker can
be used to manipulate a trace with the Trace Analyzer in such away that the order and
parameters of the original API calls are preserved. As statequeries or render calls do
not generally modify the state, we do not need to model their behavior.

The state tracking done in the tracer is a very small subset ofthe full state tracking
mechanism used in the Trace Analyzer. To distinguish these two cases, the simpler
tracer state tracking is referred to as runtime state tracking.

Runtime state tracking is essentially about maintaining references to API call pa-
rameters that cannot be serialized to the trace file at the time of the API call itself. A
classic example of such API calls is the vertex array functionality of OpenGL ES. The
problem can be illustrated with the simple procedure of drawing a triangle.

1 const GLfloat vertices[] = {0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f};
2 glVertexPointer(2, GL_FLOAT, 0, vertices);
3 glDrawArrays(GL_TRIANGLES, 0, 3);

The code first defines a set of three two-dimensional coordinates for the triangle
corners or vertices. The triangle corners are located at(0, 0), (0, 1) and(1, 0). The
second line tells OpenGL ES where in the memory to find these coordinates and how

56

they are formatted. Finally, the third line of code instructs the graphics engine to draw
one triangle with the three coordinates.

All parameters of the API calls on lines 2 & 3 can be saved trivially by the tracer,
except for the pointer to the coordinate data on line 2. The problem is that in the
C language, it is generally impossible to deduce the length of an array merely from a
pointer to it. Therefore, we cannot save the vertex data intothe trace file when thegl-
VertexPointer call is made, since we do not know how many vertices to expect.
The number of vertices is only known when the triangle is drawn at line three.

The solution is to save the vertex pointer into the state tracker at theglVertex-
Pointer call. Later, at the glDrawArrays call, the number of vertices can
be calculated directly from the function parameters and theactual vertex data can be
retrieved through the stored pointer.

Similarly, full state tracking also deals with the API call parameters. Instead of
saving the parameters to a data stream, the goal here is to determine which preceding
API calls the current API call depends on. This information can be used to decide
which API calls are redundant and can be discarded without affecting the program
outcome.

As an example, let us examine the task of choosing the filtering mode of a texture in
OpenGL ES.

1 glBindTexture(GL_TEXTURE_2D, 3);
2 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

Here, the first API call assigns texture number three to the active two-dimensional
texture unit. The second call assigns the magnification filter for the bound texture. It is
clear that these API calls need to be made in this order and both are needed to achieve
the expected outcome. Therefore, a dependency exists between them.

To model this dependency between API calls, we designed a hierarchical data struc-
ture called thestate tree. The state tree is a directed acyclic graph, in which vertices
represent the elements of a state structure and edges the dependencies between them.
The state tree also holds the concrete state values.

One possible state tree for the texture filtering example is shown in Figure 21. As
seen in the figure, there are two different kinds of elements in the tree: groups and
nodes. The groups can contain a list of child nodes and concrete state values, while
the nodes contain a set of subgroups, one of which is marked ascurrent. The groups
are used to store state values at various levels in the tree while the nodes are kinds of
switches that control traversal through the tree.

As the state tree has a single root, it is possible to refer to all other elements of
the tree through unambiguous state paths. For example, the texture filtering mode
GL_LINEAR can be found through the state path:

Root → Texture target→ GL_TEXTURE_2D → Texture name→

3 → Texture parameter→ GL_TEXTURE_MAG_FILTER

Taking into account that the nodes in the tree implicitly define the successive group,
the path can be simplified to

Root → Texture target→ Texture name→ Texture parameter

57

Figure 21. A possible state tree for storing the filtering mode for a texture object. The
tree on the left only shows the specific elements used to storethe filtering mode, while
the tree on the right also shows some alternate options for traversal, highlighting the
tree-like nature of the structure. The groups in the tree aredrawn as rounded rectangles
and the nodes are illustrated as angled rectangles.

Table 1. Mapping API call parameters to state tree elements using state paths.
API call Parameter State path
glBindTexture target Root→Target

texture Root→Target→Name
glTexParameteri target Root→Target

pname Root→Target→Name→Parameter
param Root→Target→Name→Parameter→Value

Finally, the API calls and their parameters are mapped to elements of the state tree
using state paths. An example of such mapping for the API calls used in this particular
case can be seen in Table 1. Each state path points to either a group or a node in the
state tree. If the state path points at a group, the value of the respective parameter is
stored at that group. Conversely, a state path ending in a nodesets the currently active
subgroup of that node.

Given a function call and the associated parameters, calculating the updated state
is simply achieved by processing the state paths for the parameters ordered from the
shortest to the longest. Finding the prerequisite API callsfor a given API call can be
done by collecting all the calls that have contributed to anypart of the state paths asso-
ciated with the given call. Extracting prerequisite API calls from a trace is discussed
in more depth in Section 5.4.4 on page 70.

The state tracking model presented here covers most functions in OpenGL ES 1.1
and OpenVG without modifications. However, some functionality, such as matrix

58

stacks and object deletion, requires special code for correct dependency information
tracking. Our system enables this by allowing the user to define custom state process-
ing code for the required API calls. In practice, we found thestate model’s greatest
benefit to be the compact representation; the 1,500 lines of OpenGL ES state config-
uration in our system is tiny compared to the amount of hand written code that would
have been needed to implement it manually.

5.2.6. Tracing OpenGL ES

Many of the OpenGL ES state setting functions follow a commonpattern with regard
to the size of array parameters. For example, theglMaterialfv function, which is
used to modify surface material properties, takes three parameters: the affected surface
side, the name of the material property to set and an array containing a new value for
the property. Since the final parameter is an array, the tracer must know its size in order
to save it to the trace file. Here, the array size depends on which material parameter
is being set. The rule is that by default the array contains four elements, unless the
material shininess is being set, in which case the array contains only one element.
Since similar instances of array sizes depending on the value of another parameter are
abundant in the API, a special compact representation for them was implemented in
the tracer.

The OpenGL ES tracer has a number of special optimizations for improving perfor-
mance. The rendering state is tracked in order to limit the number of vertex arrays the
tracer has to observe. The array tracker is also prevented from making internal copies
of arrays such as texture data, which are unlikely to be reused in the future.

5.2.7. Tracing OpenVG

OpenVG was designed to be conceptually similar to OpenGL ES,although with a more
object-oriented approach. Instead of a special set of functions for each object class,
OpenVG has a set of generic attribute access functions that can be used to modify and
query objects of any type. This reduces the number of different function variants from
the API and generally makes the tracer design simpler.

Path Coordinate Arrays

As with OpenGL ES, the difficulties encountered while implementing the OpenVG
tracer revolved around array parameters. A central object class in OpenVG is the path,
which is the main geometric primitive of the library. Paths consist of a list of com-
mands that make up the path and a list of coordinates for the commands. A command
is an instruction to OpenVG, indicating how to draw the next segment of the path, i.e.,
should it be a line, a curve or some other shape. The list of coordinates specifies where
this next path segment should be drawn. [48 p. 49]

The length of the path coordinate array depends on the commands that make up the
path, since different commands use a different number of coordinates. When a path
is normally extended, a list of path commands and the associated coordinates are ap-

59

pended to it. In this case, the tracer can simply calculate the length of the coordinate
data by looking at the given path commands. However, OpenVG also allows the ap-
plication to modify any contiguous subset of the stored pathcoordinates. Since the
function for modifying path coordinates does not have a parameter indicating the size
of the coordinate array, the tracer must keep a copy of the path commands in memory.
This command list is then used to calculate the expected number of path coordinates
upon demand. The command list is also updated to reflect the changes to the internal
command list of the path object.

Negative Image Strides

Another difficulty in tracing OpenVG arises from the way thatimage data is uploaded
to the graphics engine. Images in OpenVG are similar to textures in OpenGL ES: they
can be used to apply regular patterns to shapes and to import graphics from external
sources such as photographs. When images are uploaded to OpenVG, the library al-
lows the application to specify how consecutive pixel rows or scanlines are laid out in
memory. This is done with a property called stride, which indicates how many bytes
there are between the beginning of one scanline and the beginning of the next one. The
stride value may be distinct from the scanline length or the image width due to the
fact that a single pixel may occupy more than one byte of storage. Additionally, some
operating systems use bitmaps in which scanlines are not tightly packed together, but
instead have a number of unused padding pixels in between. The padding is used to
guarantee that each scanline starts at an aligned memory address regardless of the im-
age dimensions. This is usually done to improve performance, since access to aligned
memory can be much faster than access to unaligned memory on some systems. The
relation between the image width, the number of padding pixels, and the image stride
is illustrated in Figure 22.

The use of padding pixels in images has no consequences for the tracer as such,
since we can assume that the padding pixels reside in readable memory and the whole
image data can be accessed as a contiguous block. However, OpenVG also allows
the application to specify a negative stride value [48 p. 109]. A negative stride value
signifies that the image scanlines are stored in reverse order, that is, each scanline is
stored at a smaller memory address than its predecessor. This can effectively be used to
flip the image vertically while transferring to the graphicslibrary. Since the OpenVG
graphics coordinate system [48 p. 40] is vertically inverted in comparison to Symbian
OS’s coordinate system [45 p. 321], negative stride values are commonly used to
achieve consistent transfer of bitmap data between the two systems. This method is
illustrated in Figure 23. In the example, the image sent to the graphics engine is either
transferred as is or inverted vertically depending on the sign of the stride value.

For the tracer, a significant consequence of negative stridevalues is that the image
data pointer points to the start of the last scanline of the image. This is in contrast
to the general practice in C, where an array pointer points to the start of the array
data. In order to save the image data to the trace file, the tracer must first calculate
where the scanlines of the image reside in memory. Since the Trace Player also needs
to be able to reconstruct the image data in memory, we opted for the approach of
normalizing the scanline order in memory prior to saving thedata. This made the
Tracer and Trace Player design significantly simpler, although at the cost of introducing

60

Figure 22. A stride value indicates the memory offset between the start of one bitmap
scanline to the next. Here, the width of the image is 14 units,but due to the two extra
padding pixels on each scanline, the resulting stride valueis 16 units.

a small non-linearity to the tracer: all traced function calls that used negative stride
values are converted to ones using positive values in the trace file. We feel that this
design choice did not compromise the reliability of the system in a significant manner,
as the transformation done by the tracer is very straightforward.

Binding APIs

One of the OpenVG engines used in this work did not support thestandard EGL bind-
ing API. Instead, it exports a proprietary C++ interface thatallows drawing OpenVG
graphics directly into Symbian OS bitmaps. This required usto create a special vari-
ant of the OpenVG tracer in order to trace applications usingthis engine. This special
binding API also affected the design of the Trace Player withregard to trace portability;
this matter is detailed in Section 5.3.2 on page 64.

5.2.8. Tracing EGL

In comparison to OpenGL ES and OpenVG, EGL is a simple API, which was straight-
forward to implement into the tracer. Historically, EGL hasbeen bundled in the same
DLL as OpenGL ES on Symbian [52]. With the introduction of OpenVG, however,
it became apparent that EGL should also be usable independently of OpenGL ES.
This created a motive for having a separate DLL for EGL. We support this arrange-
ment in our system by generating up to three separate tracersfor EGL, OpenGL ES,

61

Figure 23. A negative scanline offset or stride is used to vertically mirror image data
passed to a graphics library. Normally, the image stride is positive and the data pointer
points to the top left corner of the image. When a negative stride value is used, the data
pointer points to the first pixel of the bottom scanline of theimage.

and OpenVG. Each traced API call is then annotated with a globally unique sequence
number, which can be later used to combine the different API traces in a temporally
coherent manner.

One notable challenge in tracing EGL was posed by its extension mechanism. While
the OpenGL ES and OpenVG specifications define a set of core features supported by
the respective graphics API, they also allow graphics engine vendors to export their
own set of additions to the core feature set. An example of such an addition is a
more efficient texture data format for OpenGL ES or an improved blending operation
for OpenVG. These additions are called extensions, and the API for using them is
provided by EGL.

If an extension reuses the functions of the original API, it can be supported sim-
ply by defining the new parameter values introduced by it in the tracer configuration.
However, some extensions also include a set of new API functions. To use an exten-
sion function, an application must first query EGL for a pointer to that function. The

62

Figure 24. a) An application queries EGL for a pointer to an extension function and
then calls that function. b) The tracer intercepts the application’s extension function
query and substitutes the return value with a pointer to its own extension function.

pointer may then be used to call the function. The problem is that the function pointer
returned by EGL points directly to the extension function inside the graphics library;
when the function is called, the tracer is bypassed completely and the function call
does not appear in the trace file. This dilemma was solved by modifying the extension
API inside the tracer to return a pointer to the tracer’s own version of the extension
function. The pointer returned by EGL is saved and subsequently used to call the real
extension function. This procedure, as outlined in Figure 24, also works when EGL
resides in a DLL different to the graphics engine.

EGL configuration objects pose a problem for trace portability, as an application can
refer to EGL configurations using opaque identifier numbers without explicitly con-
structing them through, for instance,eglChooseConfig . If only the configuration
identifier was saved, it would not be possible to determine the effective configuration
parameters only by looking at the trace file. These attributes are essential for the Trace
Player, since it must be able to find a compatible configuration when used with a differ-
ent graphics engine. The solution to this problem was to treat the configuration objects
as platform-dependant objects similar to windows and bitmaps. Just as the window
object contains the essential attributes of a window, such as its width and height, the
configuration object stores all the effective attributes ofthe EGL configuration in the
trace file.

63

Figure 25. The Trace Player reads a trace file and executes thecorresponding API calls
to reproduce the original graphics operation sequence.

1 void glColor4f_event(TREvent* event)
2 {
3 /* Decode the arguments for the function call */
4 GLfloat red = trGetFloatValue(event, "red");
5 GLfloat green = trGetFloatValue(event, "green");
6 GLfloat blue = trGetFloatValue(event, "blue");
7 GLfloat alpha = trGetFloatValue(event, "alpha");
8
9 /* Call the graphics engine function */

10 glColor4f(red, green, blue, alpha);
11 }

Figure 26. Trace Player code for theglColor4f OpenGL ES function. The player
first loads the parameters for the function from the trace fileand then calls the corre-
sponding function in the graphics engine.

5.3. Trace Player

The Trace Player is used to reproduce a call sequence recorded in a trace file. The
basic operation of the tracer is to decode a function and its associated arguments from
the trace file and then call the corresponding function in thegraphics engine. As seen
in Figure 25, the player is dynamically linked to the graphics engine like a regular
graphics application.

Example code for replaying theglColor4f function can be seen in Figure 26.
The program first extracts the four color components stored in the trace file and then
calls the graphics engine function with the proper arguments. This code does essen-
tially the opposite of the corresponding tracer function inFigure 20 on page 51.

5.3.1. Trace Normalization

The dynamic nature of array data in trace files creates some difficulty for the Trace
Player. As the trace is read and written in a chronologicallylinear order, the player has

64

identical knowledge of an array associated with a given function call as the tracer did
when originally saving the call. Because of this the OpenGL ESvertex array problem
discussed in Section 5.2.5 on page 55 also affects the Trace Player. When a vertex
array pointer is first set, the array contents are undefined. This is because the length of
the array is not known until geometry is drawn using it. Regardless of this, the player
must be able to supply a valid pointer for OpenGL ES when executing the vertex array
function call. Furthermore, the memory region referenced by the pointer must be large
enough to accommodate all data that is assigned to it during the remainder of the trace
file.

Solving this problem while maintaining the chronological linearity of the Tracer and
Trace Player required us to add a separate offline preprocessing step for trace files. This
normalization operation amends the trace file in a way that the stored array objects are
always fully defined before their first reference. An alternative approach would be
to make the tracer seek back and change parts of the already written trace when an
array becomes defined. Given the elaborate output bufferingmechanism in the tracer,
this option was not feasible. Similarly, having the Trace Player scan the full trace
file to establish its contents prior to playing it would have reduced performance and
complicated the design of the player.

5.3.2. Trace Portability

Trace portability is the ability to replay a trace with a device and graphics engine other
than which was originally used to record the trace. To make this possible, the Trace
Player must anticipate and work around the differences between the environments used
for trace playback. In the following section we discuss someaspects of trace files that
may compromise their portability.

Platform-dependent Objects

The most obvious issue inhibiting trace portability is the use of native operating sys-
tem resources, which are almost guaranteed to be incompatible in different systems.
Windows and bitmaps are examples of strongly platform-dependent objects commonly
used by graphics applications. The Trace Player manages such resources by abstract-
ing them into a portable representation of their essential attributes. These attributes are
then used to construct equivalent resources on the playbackplatform.

A common pattern in APIs is to first call one function to createan object and then
pass a reference of that object to a number of other functions. The reference to an
object is usually a pointer or another type of opaque numerical handle. In general, the
concrete values of these object references are arbitrary, since they may be based on
memory addresses and other non-deterministic quantities.From this follows that ob-
ject references stored in trace files are unlikely to correspond to live objects in memory
when trace is played back. For example, consider the following procedure of con-
structing an image and copying pixel data into it in OpenVG:

1 VGImage image = vgCreateImage(...);
2 vgImageSubData(image, data, ...);

65

Here the return value of the first function call is the reference to the image object.
This reference is then passed to the image data transfer function to designate the tar-
get image. When this application is executed and traced, the image object might get
assigned the identifier number27. On a different platform, graphics engine, or even
invocation, however, the image might get a completely different identifier. For this
reason, the Trace Player keeps track of object creations andreferences while execut-
ing traces. In the above example, the image creation commandcauses the tracer to
translate all future references to theVGImage object number27 to the new identifier
returned by the graphics engine. The object type must also beconsidered while doing
this remapping, since objects of different type may well be assigned the same identi-
fier. The same approach is applied to all object references inthe trace file. This also
includes objects that are not explicitly constructed by replayed function calls, such as
windows and EGL configurations, since their identifiers are similarly not fixed.

EGL Configurations

The EGL configuration mechanism requires special consideration in order to guarantee
trace portability. As mentioned in Section 5.2.8 on page 60,the full set of properties
of EGL configurations are saved into the trace file. When a configuration object is
referenced, the Trace Player uses this information to find a suitably close match for
the original configuration from the current graphics engine. The player will optionally
relax some requirements of the configuration until a compatible match is found. The
trace file can also be modified to force the use of a particular known configuration if a
fuzzy match is not desired.

As discussed in Section 5.2.7 on page 58, one of the OpenVG engines used in this
work used a proprietary binding API instead of EGL. To ensurethat a trace using one
binding API is playable on a platform using the other API, thetracer includes code
that emulates the essential features of one API using the other API. This approach was
preferred over modifying the function calls in the trace fileitself, since the emulation
code is quite straightforward.

5.3.3. Performance Considerations

As the Trace Player is designed to be used in benchmarking, performance is an impor-
tant aspect of the implementation. The internal processingrequirements of the player
are quite modest, since it does not need to perform any extensive state processing or
tracking. For this reason, the playback speed is essentially limited by the trace file
decoding rate. The design of the asynchronous tracer outputbuffer was adapted into
a similar input buffer mechanism for the Trace Player. This buffer is filled by a dedi-
cated reader thread, which strives to keep the player supplied with function call data.
If memory permits, the buffer size can be increased to encompass the entire trace file
to maximize performance.

66

Figure 27. The Trace Analyzer is a versatile tool for editingtrace files and extracting
data from them.

5.4. Trace Analyzer

The Trace Analyzer is used to examine and process the binary trace files produced by
the Tracer. The main purpose of the tool is to enable practical data extraction. An
average trace file contains tens of thousands of API calls andmegabytes of additional
data. The analyzer provides access to data from the level of asingle event to statistics
that span the entire trace.

An overview of the Trace Analyzer and the data flow through it is shown in Figure
27. Although the main focus of the analyzer is on the extraction of data from the trace
files, it also has functionality for editing trace files as well as synthesizing completely
new traces.

In the following, we discuss the major features of the Trace Analyzer tool.

5.4.1. User Interface

The primary user interface of the analyzer is a command prompt in the spirit of interac-
tive debuggers such as the GNU GDB [53]. The interface allowsthe user to manipulate
one or multiple trace files at once using a number of low- and high-level commands.
This interface can be operated both interactively and via automated scripts.

The analyzer interface is based on a simple procedural command language. It offers
a set of generic commands, which work with all traces regardless of the used API, as
well as a number of special commands to deal with OpenGL ES andOpenVG-specific
entities. The user can also extend the language with custom commands. The built-in
commands available for the user are show in Table 2.

67

Table 2. Commands for controlling the Trace Analyzer.
calc-frame-stats For each frame marker event, calculate the sum of the in-

strumentation data for the intermediate events.
calc-stats Calculate some derived OpenGL ES statistics based on in-

strumentation measurements.
call-histogram Show the function call frequency histogram for a trace.
checklist Run a GLES trace through a checklist of common perfor-

mance issues.
close Unload a trace file.
export Export a trace to a file in a special format.
extract Extract a portion of a trace to form a new trace.
extract-state Extract a portion of a trace including the preceding state to

form a new trace.
grep Search for events matching a regular expression.
help Show available commands or help on a specific command.
info Show information about a trace.
join Join two traces together to produce a new, third trace.
list List events contained in a trace.
load Open a trace file.
load-inst Load previously computed instrumentation data for a trace

file.
merge Merge two traces to produce a temporally coherent third

trace.
new Create a new empty trace file.
play Play back a trace file using a generated trace player.
profiling Enable or disable call profiling for all executed commands.
python Run an interactive Python interpreter that can be used to

manipulate the loaded traces.
quit Exit the analyzer.
reload Reload the analyzer modules while keeping all loaded data

intact.
renumber Renumber a trace so that the events contained in it start at

zero.
report Generate a performance report of a trace.
save Save a trace to a file.
save-inst Save the current instrumentation data for a trace file.
select Choose events from one or many traces based on a condi-

tion.
set-egl-config Force the usage of a particular EGL config in a trace.
show-plugins List the loaded analyzer plug-in modules.
show-state Print out the computed API state at a particular trace event.
simplify Remove redundant OpenGL ES commands from a trace.

68

Figure 28. The Trace Analyzer uses specially instrumented OpenGL ES and OpenVG
engines to extract detailed content statistics from a tracefile. The analyzer plays back
the examined trace using the Trace Player, which in turn queries the instrumentation
sensor readings from the engine via the EGL instrumentationextension.

5.4.2. Trace Manipulation

An essential feature of the analyzer is the conversion of binary trace file data into other
formats. The range of output formats spans from simple textual call sequences into
more complex representation such as C source code. The analyzer also allows the
extraction of a specific data subset, such as the collection of texture images from an
OpenGL ES trace. Saving a trace in the binary format normalizes the trace data as
required by the Trace Player.

The trace editing capabilities of the analyzer are based on two fundamental editing
operations: extracting and joining sequences of serialized function calls or events. In
the extraction operation, a new trace is formed from a contiguous subset of an existing
trace. Conversely, the joining operation takes two existingtraces and merges them to
form a new trace. These basic low level operations form the basis for higher level trace
manipulation functions, which can operate on larger entities such as graphics frames
and non-contiguous event sequences.

Instrumented Engines

In addition to retrieving data directly stored in the trace file, the analyzer can be used
to calculate more detailed measurements by playing back thetrace file using a cus-
tom graphics engine with integrated statistical sensors. These statistics can be used to
derive high level content features for the graphics calls stored in a trace file.

To obtain these statistics, the analyzer employs the Trace Player in conjunction with
an instrumented graphics engine. This arrangement can be seen in Figure 28. First, the
analyzer instructs the player to start executing the examined trace file. While replaying
each function in the trace file, the Trace Player queries the latest instrumentation sensor
values from the graphics engine and saves them to a data file. When the playback
is complete, the Trace Analyzer reads the instrumentation data file, making the data
available for the user.

We designed an EGL instrumentation extension for providingthe Trace Player with
a consistent and portable way of extracting the instrumentation data from a variety

69

Table 3. Content features and statistics provided by the Trace Analyzer and the instru-
mented engines.
Common content features
API calls Timestamp, duration, call histogram, array data traffic,

frame duration, EGL configuration attributes
Buffer snapshots Color buffer, depth buffer, stencil buffer

OpenGL ES
General Matrix operations, render calls, texture uploads
Primitives Submitted, degenerate, frustum culled, backface culled,

clipped, discarded, rasterized
Vertices Submitted, transformed, viewport transformed, lit, cache

accesses, cache hits
Rasterization Fragment count, texture fetches, average triangle size, dis-

carded fragments, estimated overdraw

OpenVG
General Matrix operations, render calls, image uploads, property

reads/writes
Objects Creations, attribute reads/writes
Paths Segment count, coordinate count, tessellated polygon

edges, accepted polygon edges
Rasterization Fragment count, estimated overdraw

of graphics engines. The extension allows a graphics engineto expose a number of
discrete instrumentation sensors. Each sensor is associated with a name, a textual
description, and an integral or floating point number indicating the value of the sensor.
The extension defines a number of functions that the Trace Player uses to query the
various types of sensor data during runtime. Additionally,the extension allows the
player to access a number of buffers inside the graphics engine, such as a color buffer,
depth buffer or a stencil buffer. The player can optionally save the contents of these
buffers into files. In this way, each event in the trace file canbe associated with an
image of the frame buffer at that point in time.

The analyzer can augment the collected data by calculating frame-level averages
and converting the frame buffer snapshots to a standard image file format. It can also
calculate some additional API-specific metrics, such the amount of uploaded texture
data for OpenGL ES, without the aid of an instrumented engine.

The set of content features provided by the instrumented engines is designed to
be easily extendable upon demand. The implemented featuresare listed in Table 3.
As shown, some of the higher level features are API neutral, while the more specific
statistics do not translate directly between APIs.

70

5.4.3. Content Statistics and Graphs

The main purpose of the Trace Analyzer tool is data extraction; as an average trace
file contains tens of thousands of API calls and megabytes of additional data, practical
means of finding the essential features of that data are needed. The analyzer provides
access to data from the level of a single event to statistics that span the entire trace.

A simple but convenient method of examining binary trace files is to convert them
to an equivalent plain text file. The textual trace format includes all the same events,
parameters, return values, and timing information as the original binary file in an easy-
to-read format. Additionally, the text format exporter canprint content feature values
next to each listed event and truncate large data arrays suchas textures to make the
output more manageable.

While the text format is practical for casual use, more sophisticated ways of ex-
changing data with other programs are also needed. The nearly universally-supported
comma separated value or CSV file format can be used to transferthe instrumentation
sensor readings and other statistics to other dedicated tools such as a spreadsheet.

The detailed event-level view of the analyzer is complemented by a number of
higher-level abstractions. The performance checklist is an API-specific utility, which
verifies a trace file against a set of predefined conditions. These conditions test for
known performance deficiencies and other unwanted call patterns. Some of the check-
list items apply to all graphics engines, while others are specific to the characteristics
of a certain implementation. The tests included in the OpenGL ES checklist are listed
in Table 4. Some of the checklist items are based on an OpenGL ES graphics opti-
mization guide published by Nokia [54].

Should any of the checks fail, the analyzer provides the userwith a list of the of-
fending events that triggered the failure along with a textual description of the detected
quality problem. In effect, the performance checklist is anexpert system in the domain
of vector graphics that can automatically provide a rough quality estimate of the traced
application.

Since a trace file analysis commonly revolves around graphical issues, the analyzer
also provides visual methods of browsing its contents. The tool can generate a re-
port document, which contains both an overview of the whole trace in terms of event
timings, instrumentation sensor readings, rendering targets, loaded textures and other
statistics, as well as a detailed breakdown of selected graphics frames. To cut down on
the output size, the report generator can automatically choose a number of represen-
tative frames. This selection process is done by comparing frame durations and color
histograms and discarding sequential frames that are too similar. We chose to use the
Bhattacharyya histogram distance measure [55] due to its lowcalculation overhead
and sufficient classification capability.

5.4.4. State and Frame Extraction

Trace files commonly encompass all the graphics calls made byan application while
it is running. Only a small part of this data is often necessary, making the bulk of the
trace file largely superfluous. To make it easier to focus on a particular part of a long

71

Table 4. Items included in the OpenGL ES performance checklist.
Mipmap usage Mipmap filtering reduces memory accesses and

improves image quality, bilinear filtering is a
cheap way to improve image quality on hard-
ware engines.

Synchronous functions Functions that cause the CPU to wait for the
GPU may have a dramatic negative effect on
performance.

Depth buffer clearing Failing to clear the depth buffer may have a sig-
nificant performance penalty on some architec-
tures.

Vertex buffer object usage Using vertex buffer objects reduces memory
bus bandwidth utilization on some architec-
tures.

Renderer version string dif-
ferentiation

Test whether the OpenGL ES renderer version
and extension strings are being examined for the
presence of extensions providing better perfor-
mance. For a software renderer, the complexity
of graphics content should be scaled down.

Existing texture data modi-
fication

Modifying existing texture data is an expensive
operation on most renderers.

Loading texture data dur-
ing frame rendering

Generally texture data should be pre-loaded
during the startup phase and only if needed dur-
ing runtime.

Texture data compression When supported by the hardware, texture data
compression decreases memory usage and im-
proves rendering performance.

Triangle strip geometry Using triangle strips reduces the need to process
the same vertices more than once and improve
rendering performance for complex meshes.

Multisample usage On hardware engines, multisampling improves
image quality with only a small performance
cost.

trace file, the analyzer can be used to extract a sequence of calls from a trace to form a
new smaller trace.

Simply extracting the selected calls is often not enough, since the objective is usually
to also preserve the rendering output, that is, the effect ofthe calls. For instance, the
application might have loaded a number of textures during its initialization phase, and
that texture data will also need to be resident when the extracted frame is played back.
If the extracted frame, however, does not need these textures, they can be automatically
discarded to reduce the size of the trace file.

Both the OpenGL ES and OpenVG design is based on the concept of astate machine;
the graphics engine has an internal state that is modified using API calls. As the state
is implicitly stored inside the graphics engine, the behavior of each API call depends

72

Figure 29. A single frame is extracted from a trace file. The Trace Analyzer uses state
tracking to determine which preceding graphics commands are also needed to ensure
that the rendering output of the extracted frame will be identical to the corresponding
frame in the full trace. These extra commands are then assembled into a state setup
sequence.

on the currently active state. Thus, it follows that the behavior of API calls depends on
the API calls made prior to them.

The process of extracting a single frame along with the associated state setup API
calls is illustrated in Figure 29. When a sequence of events isextracted from a trace
file, the analyzer calculates the effective state at the extraction point. The API calls
that have been used to prepare the state are then prepended tothe extracted frame.
This ensures that the rendering output of the extracted frames will be correct. Note
that the state setup API calls may appear anywhere in the preceding trace section, and
that only the required subset of the preceding calls are included. In other words, the
analyzer strives to find the minimum number of calls needed that will result in the same
effective state at the beginning of the extraction point.

The state computation and extraction algorithm builds on the state tracking system
described in Section 5.2.5 in page 55. Recall, that the state tracker describes how API
call parameters map to the branches of the internal API statetree. The state paths
describing these relations are used by the extraction algorithm to collect the set of pre-
vious API calls that have affected the state. The algorithm is based on the observation
that an API call is a prerequisite for a second API call if a state path associated with the
first call is a prefix for any of the paths associated with the second call. For instance, as
seen in Table 1 on page 57, theglBindTexture function is clearly a prerequisite
for the glTexParameteri function, since the state paths of the former call appear
at the start of the paths of the latter call.

Furthermore, an API call is said to be eclipsed or invalidated if all of its state paths
can be matched to an identical path of a successive event. This happens, for example,
when the rendering color is set twice in a row. As the second color definition overrides
the first one, the former API call is eclipsed by the latter oneand can be discarded.

The state extraction algorithm works by collecting every trace event prior to the
extraction point to a list of effective state setting events. When an event is added to the
list, all the events eclipsed by it are removed from the list.Similarly, when an event
is removed from the list, all its prerequisite events are removed, provided that they are
not prerequisites for any other events. This algorithm produces a minimal list of events

73

1 # Choose a reduction factor of 1/8ths
2 factor = 8
3 # Iterate over each event in the trace
4 for event in trace.events:
5 # Choose only texture uploading events,
6 # i.e., glTexImage2D, glTexSubImage2D, etc.
7 if event.name.endswith("Image2D"):
8 width = event.values["width"]
9 height = event.values["height"]

10 newSize = (max(1, width / factor), max(1, height / factor)),
11 # Replace the texture data with a scaled version
12 event.values["pixels"] = resample(
13 pixels = event.values["pixels"],
14 size = (width, height),
15 newSize = newSize,
16 type = event.values["type"],
17 format = event.values["format"])
18 event.values["width"] = newSize[0]
19 event.values["height"] = newSize[1]

Figure 30. A simple script that automatically reduces the size of OpenGL ES textures
to one eighth of the original. This is done by routing the pixel data of each texture
upload function through aresample -function (not shown).

that, when executed, will reproduce the same state that was effective at the extraction
point.

5.4.5. Scripting Interface

Due to the component’s high level nature and open-ended requirements, the trace an-
alyzer was written in the Python programming language. Thischoice allowed us to
implement an extensible plug-in architecture as well as integrated scripting support
in the form of user-supplied Python scripts. The scripting interface facilitates quick
ad hoc trace analysis and processing without having to resort to creating a dedicated
program for the task.

An example of an analyzer script is shown in Figure 30. The program reduces the
size of each texture in an OpenGL ES trace file to 1/8th of the original. This is done
by modifying thewidth andheight parameters of each texture upload function found
in the trace. The script could be used to test how varying the amount of texture traffic
affects a program’s performance.

74

1 > SELECT event.seq, event.name, event.duration FROM trace
2 WHERE event.duration > 10000;
3 event.seq | event.name | event.duration
4 ---
5 985 | eglSwapBuffers | 15000
6 1255 | eglSwapBuffers | 11250
7 ...

Figure 31. A query that returns all graphics operations thatran longer than 10 millisec-
onds.

5.4.6. Trace Query Language

In the spirit of the relation debugger work by Duca et al. [30], the Trace Analyzer also
offers a similar, albeit somewhat simpler, relational query language for extracting data
from trace files. The syntax of the language is based on the de facto database stan-
dard SQL. A limitation with our implementation is that only the SELECT-statement
is supported; existing trace file elements cannot be modifiedthrough the query lan-
guage. If needed, this can be accomplished with the Python scripting system described
in Section 5.4.5.

The workflow with our query language is the same as with SQL: the user submits a
textual query expression to the analyzer, which in turn responds with a tabular list of
rows of data matching that expression. An example query is shown in Figure 31. The
query instructs the analyzer to look through all graphics operations in a trace file and
return the ones that match the conditions specified in the WHERE-clause. In this case,
the returned events will be those with a duration longer than10 milliseconds.

A slightly more complex query is shown in Figure 32. When applied to an OpenVG
trace file, this expression indicates thevgDrawPath commands that resulted in
fewer than 16 pixels being drawn to the screen while the drawnpath contained more
than 10 segments. In other words, this query attempts to highlight complex OpenVG
geometry being drawn at a small scale, where the highly detailed path coordinates are
superfluous and may result in poor performance.

5.4.7. Exporting Traces as C Code

Although the Trace Player can be used to reproduce any required graphics call se-
quence stored in a trace file, it does have a number of limitations. Firstly, the player
must be separately ported to every operating system on whichit is used. Furthermore,
it may have higher memory and storage space requirements than the original applica-
tion, as the graphics commands need to be read and decoded from the trace file. Also,
a trace file is of no use to a third party, unless the player is also delivered. These is-
sues limit the utility of the Trace Player, especially in special environments such as
prototype hardware and as a part of automated testing systems.

75

1 > SELECT event.seq, event.name FROM trace
2 WHERE event.sensors.average_path_size < 16 AND
3 event.state.path.segment_count > 10;
4 event.seq | event.name
5 ----------------------
6 34 | vgDrawPath
7 71 | vgDrawPath
8 ...

Figure 32. A query that highlights complex OpenVG paths drawn at a small scale.
This is done by looking for paths that consist of more than 10 segments and produce
fewer than 16 pixels when rasterized.

The Trace Analyzer provides a way to overcome these limitations by converting a
trace file to an equivalent C source code file. Each graphics operation in the trace file
is converted to a corresponding function call in the source code. When compiled and
executed, the generated code reproduces the original tracesequence. As the code uses
only standard C language constructs and the relevant graphics API functions, it can
be run on a wide variety of platforms with relative ease. Since the code has a limited
number of external dependencies, it may be given to a third party who is unable to run
the original application due to licensing, platform, or other constraints.

Some special considerations need to be taken into account when generating C source
code from a trace file. As it is not uncommon for a trace file to contain tens of thousands
of graphics commands, the resulting C source code quickly reaches the limits of most
compilers. In particular, the amount of code contained in a single function is often
quite limited. We worked around this limitation by splitting up each frame of the
graphics trace to a separate function and generating two utility functions for playing
back one or all of the frames. However, some extremely large trace files failed to
compile even with this modification due to the large amount ofarray data contained
in them. The solution was to direct the array data into a separate assembly language
source file, which was then linked together with the generated C code. As assembly
language compilers are much simpler than C compilers, the large amount of array data
did not pose any difficulty for them. Our system supports boththe RVCT and GNU
assemblers.

In addition to calling the correct functions, the generatedC code also must ensure
that proper data is stored at all times in the various data arrays appearing in the trace
file. This is done by generating code that updates the contents of each array whenever
the trace file indicates that the underlying data was changed. As the array data is
stored directly in the source code, this method has very little performance overhead.
An additional constraint for the generator to consider is that array data is polymorphic
in the sense that a given array may store objects of any type during its lifetime. For
example, the same memory block might be reused by an application to hold floating
point vertex data at one point and byte-form texture data at another. The code generator
manages this by creating a separate virtual array for each concrete type of an array.

76

The static typing of C places some requirements for the generated code. This is
most evident in the fact that the types of function parameters must match those de-
fined in the function prototype. To ensure this, the code generator replaces numeric
constants with their symbolic equivalents. For added convenience, it also reconstructs
bit fields with the original symbolic flags. For instance, instead of the numeric con-
stant 16440, the user will see the expressionGL_COLOR_BUFFER_BIT | GL_-
DEPTH_BUFFER_BIT passed to theglClear function.

As discussed previously, trace files may also contain a number of platform-specific
objects such as windows and bitmaps. In the file, these objects are described by their
essential attributes, such as the on-screen coordinates inthe case of a window. If such
objects are encountered in the trace, the C code generator creates a function call to a
user-supplied function. This function is responsible for creating an object instance of
the appropriate type when given the attributes of that object. This scheme facilitates
practical portability of trace files that contain platform-specific elements, since the user
only needs to implement these object construction functions once for a given platform.

Figure 33 shows an example of C code generated from an OpenVG trace. The file
begins with the declaration of the objects used in the trace.In this case,CFbsBitmap
is a Symbian bitmap object, which will hold the final renderedimage. Note that on a
platform other than Symbian, this object can be implementedusing the native bitmap
equivalent of that platform; the only requirement is that the object is compatible with
the used EGL implementation. The creation of the bitmap object is done through a
user-supplied function on line 17. Theinit function constructs all platform-specific
objects used in the trace.

The object definitions are followed by the data arrays containing the actual array
data. Arrays and the data contained in them are declared separately, as a single array
may hold multiple sets of data during its lifetime.

Finally, the frame0 function holds the actual OpenVG code for the first frame of
the trace file. The code uses the objects and arrays defined earlier in the file. Note how
the identifier constants have been given human-readable names to make their meaning
apparent.

77

1 /* Objects */
2 static CFbsBitmap* cfbsbitmap_35fe3f48;
3 static VGPaint vgpaint_2;
4 ...
5 /* 15 arrays */
6 static VGfloat vgfloat_array0[5];
7 static VGfloat vgfloat_array1[15];
8 ...
9 /* Array data */

10 static const VGfloat arrayData0[9] = {
11 5.324997f, 0.000000f, 0.000000f, 0.000000f, -5.324997f,
12 0.000000f, 0.249924f, 445.000000f, 1.000000f
13 };
14 ...
15 static void init(void* context)
16 {
17 /* CFbsBitmap attributes: width, height, mode */
18 cfbsbitmap_35fe3f48 = createCFbsBitmap(context, 320, 445, 0);
19 ...
20 }
21 ...
22 static void frame0(void* context)
23 {
24 vgSeti(VG_RENDERING_QUALITY, VG_RENDERING_QUALITY_BETTER);
25 vgpaint_2 = vgCreatePaint();
26 LOAD_ARRAY(vgfloat_array14, arrayData10, 4);
27 vgSetfv(VG_CLEAR_COLOR, 4, vgfloat_array14);
28 vgSetParameterfv(vgpaint_2, VG_PAINT_LINEAR_GRADIENT,
29 4, vgfloat_array10);
30 vgClear(0, 0, 320, 445);
31 vgAppendPathData(vgpath_5, 343, vgubyte_array4, int_array3);
32 vgDrawPath(vgpath_5, 2);
33 ...
34 }

Figure 33. An abbreviated C source file generated from an OpenVG trace file.

78

6. USE CASE DEMONSTRATION

The purpose of this chapter is to demonstrate how each of the core use cases originally
presented in Chapter 4.3 on page 39 is performed using the Graphics Quality Analysis
Toolkit implementation.

6.1. Unsatisfactory Application Performance

The first use case illustrates how the Graphics Quality Analysis Toolkit is used to
look for causes behind the poor performance of a graphics application. The appli-
cations used in this example are an OpenGL ES-based image gallery application and
an OpenVG-based SVG animation player. The gallery application allows the user
to browse digital photographs, while the SVG animation player reproduces animated
SVG files. Both applications are run on a Nokia N95 smartphone with S60 3rd Edition
Feature Pack 1 system software. This device features a 24 bit, 240 by 320 pixel dis-
play with a hardware accelerator for OpenGL ES 1.1 and a software implementation
of OpenVG 1.0.

The process begins with the generation of suitable OpenGL ESand OpenVG tracers
for the targeted Symbian platform. These tracers are then compiled and integrated into
a regular system software image for the N95. Installing thisimage on the device yields
an otherwise normal smartphone, except that selected programs using OpenGL ES or
OpenVG have their graphics commands silently saved to a trace file. The image gallery
application and the SVG player are then installed and run on the device, resulting in
one trace file for each application.

Both of the trace files are then loaded into the Trace Analyzer,which is used to
produce the initial high-level statistics shown in Table 5.Both traces are also converted
into a plain text format for a quick reference as to which graphics operation sequences
each application was using.

It was immediately apparent that the performance of the image gallery application
is not at a sufficient level: the application barely renders one frame per second, which
is far below the interactive limit of 10 frames per second. Further analysis of the appli-
cation’s graphics trace reveals a number of possible causesfor this deficiency. A large
portion of the graphics calls made by the application are state setup calls that modify
the rendering library parameters. This is not uncommon in itself, as the majority of
the available OpenGL ES API calls are for state manipulation. In this case, however,
most of the state setup commands are redundant. That is, theyare used to set the
same state over and over again and thus have no effect. A common call pattern seen
in the application is shown in Figure 34. The redundant call setup sequence on lines
1 through 7 often repeats hundreds of times before any actualrendering takes place.
With the Trace Analyzer’s state tracking functionality it is determined that over 70% of
the image gallery application’s graphics calls were redundant. This is in sharp contrast
with other examined graphics applications, where the same figure is usually below 5%.
Although graphics drivers are often optimized in a way that most of such redundant
state toggling is culled from the stream of commands sent to the graphics accelerator,
this high amount of essentially useless graphics commands is bound to have an impact
on performance.

79

Table 5. An overview of the captured trace files. The bar charts indicate the number of
frames drawn per second during the application’s execution.

Image gallery SVG player
Trace file size 9.2 MB 13.2 MB

Duration 28 s 39 s
Graphics operations 19 482 234 114

Frames 32 548
Frames / second 1.14 14.05

A second observation made from the image gallery trace is thelarge quantity of
texture data uploaded by the application. As shown in Figure35, a significant per-
centage of rendered frames involve a sizable amount of texture data transfer up to a
total amount of 12.5 megabytes. The texture transfer rate isdependent on the graph-
ical content of the animation at each point in time. While thisis somewhat expected
behavior for an application dealing with image-based animation, a closer examination
reveals that a number of textures used by the application could be eliminated without
changing the graphical end result. On a number of occasions the application uploads
a texture only to moments later replace the contents of that same texture with a new
one without using the original texture image at all. This indicates a possible flaw in the
application’s texture management logic. In addition to these unused textures, the Trace
Analyzer highlights a number of cases where the applicationmodifies the contents of
a texture immediately after using it. Such action may inhibit rendering parallelism,
since the graphics library must wait until the graphics accelerator is finished with the
texture or make a new copy before changing its contents. Uploading textures is often
an expensive operation, and especially so in the case of the Nokia N95, since the tex-
ture data needs to be converted into a specific format used by the graphics accelerator.
Due to this it is often beneficial to limit the number of textures used by an application.

A third issue uncovered from the image gallery trace is the fact that on two occa-
sions, the application destroys its main rendering surfaceand recreates an identical
surface immediately afterwards. Apparently this is done asa response to the appli-
cation window moving to a different region on the screen. Such explicit processing
is unnecessary, since the EGL windowing system interface manages the interaction
between the rendering surface and the underlying native window automatically.

While the performance of the SVG player application is considerably better than
that of the image gallery application, it also suffers from anumber of inefficiencies
in its implementation. As shown in Figure 36, this application also utilizes a con-
siderable amount of pixel image data. While SVG files generally do not employ pixel
images, the animation in question uses them as an optimization: complex vector shapes
in the animation are replaced with static image imposters. This is often a good way
to improve performance, especially on software rasterizers, since they typically draw
image bitmaps faster than very complex vector shapes. In this case, however, this op-
timization uncovers a rather large inefficiency in the SVG player: instead of uploading
the imposter images once and then reusing them repeatedly, the player uploads the
same image data over and over again. This is quickly confirmedby extracting all the
used OpenVG images into regular image files with the analyzer. As with textures in

80

1 glLoadIdentity()
2 glTranslatex(x=0, y=0, z=-524288)
3 glScissor(x=0, y=0, width=240, height=320)
4 glScissor(x=2, y=264, width=40, height=30)
5 glTranslatex(x=1280, y=10496, z=0)
6 glScalex(x=15805, y=15805, z=0)
7 glColor4x(red=65536, green=65536, blue=65536, alpha=0)
8 glLoadIdentity()
9 glTranslatex(x=0, y=0, z=-524288)

10 ...
11 glDrawElements(mode=GL_TRIANGLES, count=6, ...)

Figure 34. Redundant state setup in the image gallery application consisted of hun-
dreds of repetitions of lines 1 through 7. EachglLoadIdentity call discards the
work done by the previous matrix manipulation commands. Similarly, calling gl-
Scissor multiple times without rendering anything in between serves no practical
purpose.

Figure 35. Texture data uploaded by the image gallery application as a function of
time.

OpenGL ES, this image traffic can be a very large burden depending on the underlying
OpenVG engine.

The trace file also reveals that in addition to images, the SVGplayer also destroys
and recreates every other used OpenVG object at each drawingoperation. The entire
animated scene is built from the ground up for each frame, even if a small part had
changed in comparison to the previous frame. This strategy is very efficient in terms
of memory usage, since each OpenVG objects exists in memory only while it is being
used. A major downside is that the OpenVG engine cannot applyany extensive opti-
mization strategies, since its knowledge of the graphics scene is effectively reset after
each drawing operation.

In both cases, the major contributors to the observed performance problems were
found to reside in application code. The performance observations discussed above of-
fered valuable input to the application developers in further performance optimization
work. Undoubtedly the same performance issues could have also been detected with

81

Figure 36. Image data uploaded by the SVG player applicationas a function of time.
Frame captures from the animation are shown above the graph.

a careful review of the respective source code of both applications, but the key benefit
delivered by the Graphics Quality Analysis Toolkit here is the greatly reduced effort,
higher level of automation and easier data extraction when compared to the source
code review.

6.2. Visual Error in Application

The second use case concerns an application with a clearly visible visual rendering
error. Figure 37 shows an example where an OpenGL ES application displays in-
valid graphics with missing triangles and generally distorted geometry. Here the Trace
Player is first used to replay the trace file from the application on a reference engine.
This produces a correct visual output, which indicates thatthe error is caused by the
graphics engine.

In this use case demonstration we use two applications: an OpenGL ES performance
benchmark and an OpenVG SVG image viewer. The used hardware configuration is
identical to that of the first use case. The process of tracingthe affected applications is
also performed as described before.

The OpenGL ES benchmark application works by rendering a number of different
animated scenes and measuring how quickly each scene is drawn by the graphics li-
brary. The visual error in this case is a very apparent one: one whole scene from the
benchmark is missing and nothing but a blank screen is displayed. The application
functioned properly on other devices, leading to the conclusion that the error is caused
by a defect in the graphics engine of this particular device.

The benchmark graphics trace is loaded into the Trace Analyzer and the Trace Player
is used to locate the time range of the missing scene. Subsequently one graphics frame
is extracted from the missing scene. The trace player is thenused to verify that the
extracted frame still reproduces the error on the hardware device. This confirmation
allows the analysis to focus on the relatively simple singleframe containing only 420
graphics commands instead of the full trace of 39 994 commands.

82

Figure 37. a) An OpenGL ES application is exhibiting a visualerror. b) The application
trace produces a correct visual output on a reference graphics engine, indicating an
error in the first engine.

As described in Section 5.4.3 on page 70, the analyzer includes an automated check-
list utility that looks for predefined call patterns in tracefiles. In this case, the checklist
indicates that the benchmark application is using theglColorMask function. This
function is used to restrict rendering output to a subset of the red, green, blue, and
alpha color channels. Normally this would not have been a problem, but in this case
it was known that the OpenGL ES hardware of the Nokia N95 may not perform color
masked rendering correctly under all circumstances. The suspicion is quickly veri-
fied by disabling the color mask command in the trace file and replaying the trace on
the device. With the modified trace, the missing scene is restored, albeit with slightly
incorrect rendering due to the removed color mask setting.

With the problem isolated, the next step is to prepare an isolated test case for repro-
ducing the issue. This is done by using the Trace Analyzer to automatically convert
the extracted graphics frame into equivalent platform-independent C source code. This
source code is then sent to the graphics hardware vendor, whois able to use it to fix the
underlying defect in the graphics driver. The graphics vendor would have been unable
to use the original benchmark application directly, since it is not compatible with their
development platform.

The visual error exhibited by the SVG image viewer application is more subtle:
a complex SVG drawing was otherwise fully rendered, except for a small missing
geometric shape. As the graphics trace taken from the application indicates no obvious
faults, the next step is to test whether the absent shape is caused by an error in the
OpenVG renderer or the SVG viewer application itself. The trace file is replayed on a
number of other OpenVG renderers, including the OpenVG reference engine. In each
case, the output is essentially identical to that of the original rendering: the missing
shape is also missing with the other engines. Based on this finding, the defect can
be classified as being caused by the SVG viewer application. This conclusion is later
confirmed in further analysis by the application developers.

In both cases, the Graphics Quality Analysis Toolkit enables efficient means for pin-
pointing the root cause behind a visual error. An indispensable advantage provided
by the toolkit here is the ability to effortlessly transfer graphics content from one plat-
form to another; the development platforms used by graphicshardware vendors and

83

Table 6. An overview of the captured trace files. The bar charts indicate the number of
frames drawn per second during the application’s execution.

Application menu GPS map navigator
Trace file size 22.0 MB 6.1 MB

Duration 45 s 1 min 4 s
Graphics operations 449 453 40 870

Frames 277 446
Frames / second 14.58 13.46

reference engines are seldom compatible with actual production systems used by the
applications.

6.3. Application Quality Analysis

The third use case aims to assess the implementation qualityof a vector graphics appli-
cation. This situation differs from the first use case in thatthere is nothing immediately
wrong with the graphical performance or functionality of the application. The objec-
tive is to perform a preemptive quality analysis in order to uncover issues that may not
be evident through only casual use of the application.

The hardware used in this demonstration is the same Nokia N95as in the earlier
cases. Both of the traced applications, an application launcher menu and a global po-
sitioning system (GPS) map navigator, employ OpenGL ES graphics. The application
launcher presents the user with a browsable menu of application icons, while the GPS
map navigator displays the current position of the device ona digital street map. An
overview of the captured traces is shown in Table 6.

The Trace Analyzer was first used to provide an overview of both traces, shown in
Table 6. The average frames per second figures for both traceswere generally within
the interactive range, and the applications appeared responsive to the user.

The Trace Analyzer is then used to generate a more detailed view of a number of
graphics content statistics from the menu application. These statistics are illustrated in
Figure 38. The frames per second figure is particularly telling: although on average,
the application maintains an interactive display refresh rate, some intermittent process-
ing causes severe drops in the graphics refresh rate. This isperceived by the user as
visible discontinuities in otherwise smooth animation. The diagram also reveals that
the graphics content complexity generally tends to increase around these performance
drops, suggesting that the reduced performance is related to something the application
is rendering at those particular moments. Especially the amount of uploaded texture
data correlates strongly with the low refresh rate. The number of graphics primitives
rendered by the application is well within the capabilitiesof the device at all times.

These findings warrant further investigation into the moments of low performance of
the menu application. The Trace Analyzer is used to extract anumber of frames around
these points in time. The traces for these frame sequences indicate several deficiencies:
firstly, graphics are being rendered to a texture, but not through the standard OpenGL
ES render to texture mechanism, but instead via explicitly reading back pixel and sub-

84

Figure 38. Graphics content statistics from the OpenGL ES-based menu application in-
dicate that its performance (purple line) varies greatly over time. The low performance
seems to correlate with the periodic texture data uploads (gray bars) and increased ren-
dering complexity (green line), suggesting that the workload presented to the graphics
engine during these moments exceeds the capabilities of thehardware. Note the loga-
rithmic vertical axis.

sequently uploading that data into the targeted texture. Secondly, theglColorMask
is being used, triggering an expensive emulation operationin the graphics driver due
to hardware limitations. Finally, the application is modifying subregions of existing
textures, inhibiting rendering parallelism. Furthermore, the application issues a large
number of redundant graphics state modification commands during each frame.

In addition to these issues, the trace analysis also uncovers other problems relevant
to the mobile application platform. A major issue is that themenu application does
not pause its display refresh cycle at any point during its operation. The graphics are
updated continuously even if there are no animated elementson the screen. Similarly,
the application does not cease rendering when another application is launched from the
menu and the menu itself becomes a hidden background task. This kind of behavior is
especially detrimental in terms of battery life, since the graphics accelerator cannot be
powered down while an application is issuing commands to it.

The GPS map navigator trace does not at first indicate any major deficiencies in
the application. One exception is the fact that the graphicsare being rendered into a
pbuffer surface instead of a more efficient window surface. Since a pbuffer surface is
not double buffered, the graphics accelerator cannot work on two sequential frames in
parallel, degrading rendering performance by a factor of two or more.

85

More detailed analysis of the trace, however, shows that theapplication has two
completely different modes of working in terms of graphics rendering. The first mode
is used when showing an orbital view of the planet Earth, and the second scheme is
activated when the camera zooms into a street level view. While dedicated graphics
rendering techniques are often beneficial with large data sets, the implementation in
this case is troublesome: the street view is being rendered with an entirely custom
software graphics engine embedded inside the application.This meant that the hard-
ware accelerated OpenGL ES engine is being completely eschewed in favor of the
proprietary engine whenever a street level map is displayed. Since the street level view
is quite probably the most common mode of operation for the application, this design
choice is responsible for much increased processing power and battery charge con-
sumption when compared to a hardware engine. This solution is also likely to cause
significant performance problems on a device with a higher resolution display. As the
software engine is completely encapsulated inside the navigator application, tracing its
operation is not possible.

The Graphics Quality Analysis Toolkit was used here to conduct a precautionary
analysis of applications that did not appear to have major performance or visual prob-
lems. The findings encountered in this case, especially withregard to battery usage,
warranted for a more complete review into the design of the applications in question.

6.4. Graphics Engine Benchmarking

In the fourth use case, the objective was to evaluate a new graphics engine with graph-
ics content extracted from existing applications. The output of this process is an esti-
mate of how well a particular software or hardware graphics platform performs with
real-world applications.

The process begins with the selection of three applicationsto be used as sources
for graphics content: an OpenGL ES-based application launcher menu, an OpenVG
system icon loader and a Java Mobile 3D Graphics (M3G) benchmark. The fact that
M3G is commonly implemented on top of OpenGL ES allows us to utilize the tracer
also in this case. Each application is traced and one frame isextracted from each trace.
The frames are chosen manually to represent typical graphics content of each respec-
tive application as closely as possible. The frames are thencompiled into a number
of benchmarks by repeating the frame multiple times. When run, these benchmarks
effectively indicate the steady state performance of each frame.

In the interests of reliable benchmarking, several measurements are conducted to
test the relative performance of the Trace Player and C code generated from the traces.
Three different animated graphics applications are chosenfor the experiment: two C-
based OpenGL ES applications with simple and complex geometry respectively and
an application with medium geometric complexity implemented on top of Java M3G.
An overview of the applications is shown in Table 7. The complexity estimates of the
applications are based on the average number of triangles drawn by the application
during each frame. The simple and complex geometry benchmarks are conducted
on a Nokia N800 [13] Internet Tablet running Linux, while theM3G benchmark is
performed on a Nokia N95 smartphone.

86

Table 7. Properties of the trace files used to measure trace playback performance.
Simple geom. Complex geom. M3G app.

Trace file size 1.9 MB 29.9 MB 1.6 MB
Graphics operations 23 264 124 139 31 236

Frames 52 51 206
Triangles / frame 2 239 36 934 19 018

Figure 39. Performance comparison between the original application, the Trace Player
and C code generated from the trace. The performance of the C code matches that of
the original application.

The results of the experiment are shown in Figure 39. According to the hypothe-
sis, the Trace Player may have some overhead compared to the original application,
while the generated C code will have less overhead. The results appear to confirm
these assumptions: the Trace Player does not achieve the performance of the original
application, while the generated C code even surpasses the performance of the original
application. The penalty of the Trace Player is especially apparent in the case of com-
plex geometry, where large amounts of array data need to be decoded from the trace
file. An exception is the M3G case, where all three benchmark variants scored nearly
equally. While the application in question does have moderately complex geometry,
the rendering loop does little more than submit that geometry to be rasterized. Be-
cause of this, the differences between the different benchmark programs are muted, as
the majority of the work is done inside the graphics engine instead of the application
logic.

87

In this use case, we have demonstrated how the Graphics Quality Analysis Toolkit
was used to evaluate the performance of given graphics content in a wide variety of
graphics engines and platforms. With the Trace Player and the C code generator,
benchmarking can be performed with a minimum effort on any suitable platform ir-
respective of which platform the original application was using. Furthermore, no ap-
plication source code changes or access was required, enabling the use of practically
any graphics application for benchmarking purposes.

6.5. Graphics Content Analysis

The fifth and final use case aims to demonstrate a practical process for obtaining accu-
rate in-depth content features from OpenGL ES and OpenVG applications. Previously
this kind of data had to be acquired manually through debugging or modifications to
the application or the graphics engine.

Three applications are chosen for this use case demonstration: an OpenGL ES-
based application launcher menu, an SVG-Tiny image loader built on OpenVG, and
an OpenGL ES graphics hardware marketing demonstration. The application launcher
and the SVG image loader represent regular production software, while the marketing
demonstration was created by graphics experts for the express purpose of exercising
the capabilities of the underlying graphics engine. All applications are executed on a
Nokia N95, except for the graphics demonstration software,which is run on a Nokia
N800.

As before, the applications are traced individually and thetraces are loaded into the
Trace Analyzer. Each trace is then replayed with the Trace Player, which calculates
the content statistics using the instrumented OpenGL ES andOpenVG engines. Some
of the obtained statistics for the OpenGL ES applications are shown in Table 8 and for
the OpenVG application in Table 9.

The first section of each table lists aggregate content features that span the entire
respective trace. The remaining rows show a statistical breakdown of measurements
from each rendered frame. For instance, therender calls section of the first table
indicates that the application launcher submits an averageof 90 drawing commands for
each frame. In the case of the SVG image loader, each consecutive frame corresponds
to a different displayed SVG file. The inline bar charts beside the figures represent the
distribution histogram for the respective value.

While some of the reported statistics are common for both APIs, most of them
only apply to a particular API. We first discuss the shared attributes, followed by the
OpenGL ES and OpenVG specific statistics. The number ofgraphics operations in-
dicates how many API calls are made in total during a frame. The number ofrender
calls is a subset of this figure: it only includes the API commands that produce visible
pixels; the remaining API calls are state manipulation commands.Matrix operations
refer to API calls that modify the various matrices defined inboth APIs. The figure
rasterized pixels indicates how many pixels the application draws in relationto the size
of the screen. Finally, thetexel and pixel uploads indicate the amount of OpenGL ES
texture data and OpenVG image data uploaded by the application during each frame.

The OpenGL ES-specific figures begin with the number ofprimitives or triangles
submitted to the graphics engine. This figure is a very commonly used estimate of

88

Table 8. Calculated OpenGL ES content statistics.

Application Marketing
launcher demonstration

Trace file size 13.1 MB 29.9 MB
Total graphics operations 297 294 124 139

Surface size 240 by 320 640 by 320
Frames 165 51

Total render calls 41 257 5087
Texture data 1.5 MB 12.9 MB

Graphics operations min 1 421 115
max 4 664 4 249

mean 2 169 2 433
Render calls min 88 55

max 192 175
mean 90 109

Matrix operations min 23 279
max 115 880

mean 50 550
Texel uploads min 0 0

max 107 633 3 294 893
mean 2 864 63 363

Primitives min 132 9 125
(triangles) max 444 98 771

mean 192 36 934
Backface culled min 0 1 795
primitives max 0 18 177

mean 0 6 221
Frustum culled min 0 3 142
primitives max 30 66 735

mean 0.9 22 969
Vertices min 264 27 375

max 1 144 296 313
mean 422 110 801

Lit vertices min 0 22 76
max 0 25 451

mean 0 9 887
Transformed vertices min 264 10 937

max 888 168 051
mean 383 59 789

Rasterized pixels min 31 % 105 %
(% of surface size) max 315 % 292 %

mean 140 % 147 %
Triangle size min 588.5 3.0
(pixels) max 2 001.8 110.2

mean 1 046.0 17.7

89

Table 9. Calculated OpenVG content statistics.
SVG image

loader
Trace file size 1.7 MB

Total graphics operations 28 276
Frames 162

Total render calls 1 581
Graphics operations min 19

max 830
mean 173

Render calls min 1
max 51

mean 9.7
Matrix operations min 0

max 68
mean 16

Created objects min 0
max 15

mean 3.0
Rasterized pixels min 0 %
(% of surface size) max 800 %

mean 136 %
Path size min 0.5
(pixels) max 38 903

mean 1 476
Path segments min 0

max 335
mean 74

Tessellated edges min 0
per path max 111

mean 23.9
Pixel uploads min 0

max 0
mean 0

Gradient stops min 0
max 44

mean 9.1

90

content complexity, since the number of triangles drawn hasstrong implications to the
workload of the graphics engine. Since it is not uncommon fortriangles to be back-
facing or outside the graphics viewport, that is, invisible, engines commonly are able
to discard such primitives at an early phase in the graphics pipeline. The number of
backface-culled primitives andfrustum-culled primitives describe the amount of trian-
gles rejected in this fashion. Thevertex count shows the number of three-dimensional
coordinates used to define the drawn triangles. Although a normal triangle is made
of three vertices, it is possible to define multiple triangles with fewer than three ver-
tices per triangle with constructs such as triangle strips.This is why the number of
vertices listed in the table is not exactly three times the number of drawn primitives.
This technique helps to limit the number oflit and transformed vertices, which refer
to the subset of vertices which underwent lighting and coordinate transformation cal-
culations. Finally, thetriangle size describes the number of pixels produced by each
rasterized triangle.

The OpenVG-specific statistics begin with the number ofcreated objects, such as
paths, paints, and images. This is followed by thepath size, which tells the number of
pixels produced when a path was rasterized, not unlike the triangle size for OpenGL
ES. The number ofpath segments shows how many segments were used to define each
drawn path. The number oftessellated edges per path is a similar figure, but with a
more direct relation to the graphics engine workload. It tells how many polygon edges
the graphics engine needs to represent an infinitely smooth drawn path as discrete
pixels. The more edges a path generates, the more complex therasterization process is
for the graphics engine. Finally, thegradient stops figure indicates how many different
color values are used to define gradient paints.

The measurements listed in the tables warrant some observations of the traced appli-
cations. The application launcher and the marketing demonstration submit comparable
levels of graphics operations, but the latter uses significantly more complex geometry.
In other words, the application launcher employs a relatively large amount of API calls
to render comparatively few triangles. An optimization possibility would be to render
multiple similar objects at once.

The differences in content complexity are also apparent in the average size of the
rasterized primitives: the triangles drawn by the marketing demonstration are tiny
compared to the application launcher. Based on the large number of culled primi-
tives, the marketing demonstration seems to rely on the graphics engine to efficiently
discard invisible geometry. The application launcher represents the opposite extreme,
mainly submitting only completely visible geometry. The number of rasterized pixels
was often below 100 %, suggesting that the application goes further by only drawing
the subregion of the screen that needed to be updated. Lighting shows a similar divide:
the marketing demonstration makes use of OpenGL ES lighting, while the application
launcher employs no lighting effects at all.

While both applications apply textures to the drawn triangles, their methods of defin-
ing the texture data are different. The marketing demonstration uploads all texture data
with a single step at the start of the animation. This ensuresa smooth frame rate at
the expense of memory usage, since all required texture images are kept in graphics
memory throughout the whole animation. In contrast, the application launcher up-
loads textures on demand, striving to minimize the size of the texture memory working

91

set. Both approaches are valid, but may result in wildly different performance figures
depending on the underlying graphics engine.

The SVG image loader uses a relatively low number of OpenVG objects to render
to the loaded images. The trace indicated that it reuses the same objects by replacing
their previous contents with new data on demand. This usage pattern may inhibit full
rendering parallelism on hardware engines. The rasterizedpaths, however, generate a
large amount of pixels on average, indicating that the vector images do not have extra-
neously fine details. On average, the number of rasterized pixels is also moderate in
relation to the output surface size, a sign that the images donot have many overlapping
hidden regions. No pixel images are also used, meaning that the source images are
fully vectorized.

With this use case, we have demonstrated a process for obtaining detailed content
features from graphics applications with the Graphics Quality Analysis Toolkit. This
method is both practical and straightforward, since it requires no modification to the
investigated applications or system graphics engines and can be extended to provide
additional statistics with moderate work. The data obtained in this manner may serve
as a guide to further application or graphics engine optimization work and research
into graphics workload estimation.

This final use case concludes the use case demonstration chapter. We now move to
discuss the findings presented in this work.

92

7. DISCUSSION

The Graphics Quality Analysis Toolkit was born out of necessity for practical and
efficient means to manage an ever-increasing amount of quality issues in mobile vector
graphics applications. We based the design of the toolkit onwell-established previous
research in the field. The fundamental idea of capturing graphics commands into a
trace file was directly inspired by Dunwoody & Linton [22] andother pioneers. The
inherent advantage of not requiring any instrumentation ofthe application code or the
graphics engine was an important reason for choosing their method as the basis for
our work. Our approach, however, differed in that we kept thegraphics command
abstraction level at the level of individual API calls instead of specifying a higher level
intermediate language. This ensured that we could capture the exact behavior of the
traced application as closely as possible.

Chromium [23], the extensible OpenGL stream processing system, has a very sim-
ilar architecture to the tracer in our system, and thus couldhave served as a basis for
our implementation. Instead, we chose to implement a customtracer through code
generation. This enabled us to support nearly any C-based API, such as OpenGL ES
and OpenVG, while Chromium would have directly offered support only for OpenGL.
Additionally, our platform portability and performance requirements on embedded sys-
tems also necessitated a customized, more focused solution.

State tracking also plays a very central role in our work. It enables many of the key
use cases of the Tracer and the Trace Analyzer, such as extracting frame sequences
from longer traces and pinpointing quality problems in traces. Since a requirement for
the toolkit is to be graphics API-neutral, the same principle also applied to the state
tracker. This lead us to develop a generic tree data structure suitable for describing
the state of EGL, OpenGL ES, OpenVG, and other similar APIs. In our experience,
this method greatly reduced the amount of work for adding newgraphics APIs to our
system in comparison to hand-written state tracking code asused by Buck et al. [26],
Chromium, and others. Our method also ensures that the tracedgraphics calls are
not modified in any substantial way when played back in comparison to the original
application. This was important, since our system was designed for reproducible ap-
plication debugging and any unintended modification of the graphics command stream
might change the graphics engine behavior substantially.

The design of the Trace Analyzer was driven by the core use cases for the system.
Previous research into graphics workload estimation and characterization was used as
a basis for the content features calculated from graphics traces. We met our objective
of building a system that provided the features most commonly used for workload es-
timation. While previous research only covered 3D graphics,our toolkit also provides
content features for 2D vector content.

In the domain of graphical debugging, our toolkit was inspired by related work such
as NVIDIA PerfHUD [27], GDEBugger [28], GLIntercept [29], and the relational
graphics debugger by Duca et al. [30]. All of these solutions, however, were based
on live interaction with the debugged application. Our approach was to instead focus
completely on offline trace analysis. In the context of embedded applications, offline
analysis was essential since the target device often lackedthe necessary processing
power and usability for interactive graphical debugging.

93

Working with the trace file rather than the live application also had the added ben-
efit of providing completely repeatable graphics sequences; in effect, it separated the
examined quality issue from the application. Offline analysis also facilitated remote
debugging, in which the execution environment and the application can be physically
separate from the analysis environment. Our system also added the possibility of trans-
forming the trace file into different formats. In our experience, the ability to generate
equivalent C code from a trace file was a powerful tool in debugging and regression
testing.

As with all software, some unanticipated challenges were met during the develop-
ment of the Graphics Quality Analysis Toolkit. We found thateven simple graphics
applications could submit thousands of graphics operations in very short time periods.
This placed strong scalability requirements to the Tracer and the Trace Analyzer to
ensure applicability to production software. Another issue was that while the binary
trace file format remained stable, a number of incompatible modifications had to be
made to the format at logical level as API coverage was refined. The effect of this
was that old trace files had to be manually translated into thenew system to remain
compatible. Our design also called for the use of C header files to define the graphics
API functions. In retrospect, a simpler syntax would have been more viable due to the
complexity in implementing a sufficiently robust C parser.

We began this work with an overview of mobile vector graphicsand the effects
of quality issues in graphics applications. We then defined aclassification system for
these quality problems based on the dominant cause of the issue. It quickly became ap-
parent, that while the classification system was an effective tool, it required a compre-
hensive supporting toolchain for practical application. This was the driving motivation
for creating The Graphics Quality Analysis Toolkit: it enabled in-depth examination
of any OpenGL ES and OpenVG applications, providing the necessary information for
reliable quality problem classification.

To date, the Graphics Quality Analysis Toolkit has been successfully applied to solv-
ing numerous quality issues in production software in the Display & Graphics Soft-
ware group. The toolkit has helped to significantly decreasethe amount of time spent
in debugging common graphical errors and performance problems such as incorrect
rendering and application crashes. It has also enabled new forms of graphics engine
benchmarking, such as using the traced content of existing system applications for
benchmarking, which previously required an impractical work effort. The toolkit has
also offered a new level of insight into the graphics contentof mobile applications, pro-
viding for valuable input into system design and graphics engine optimization work.
We are therefore confident, that the graphics trace architecture and the offline analy-
sis approach is a realistic and powerful approach to improving mobile vector graphics
quality.

7.1. Future Work

A natural continuation to the work presented in this thesis is to follow the development
of the graphics APIs themselves. The introduction of programmable shaders to em-
bedded systems by OpenGL ES 2.0 [56] will undoubtedly bring forth new challenges
in vector graphics quality. While basic tracing and replaying of OpenGL ES 2.0 graph-

94

ics content is possible with minor additions to our system, the workload presented to
a shader programmable graphics engine is closely tied to thecomplexity of the used
shader program. This calls for radically enhanced complexity and workload estima-
tion methods than what are valid for the fixed function pipelines of OpenGL ES 1.x
and OpenVG 1.x. We feel that the architecture of our toolkit would offer a practical
environment for OpenGL ES 2.0 software analysis with the addition of such advanced
content features.

Our implementation of the Trace Analyzer was based on a command line user inter-
face. It would be advantageous to explore graphical alternatives, as the data contained
in trace files is very graphical in nature.

The existing content features provided by the toolkit open the possibility for further
research into clustering applications based on graphics complexity and creating syn-
thetic benchmarks based on real application content. Givena big enough sample set,
application clustering could enable classification into performance classes, providing a
way to roughly estimate application performance on a new graphics architecture. The
benefit of synthetic benchmarks would be to overcome the limitations of using static
traced application content for benchmarking. While benchmarks created from traces
are representative of the application in question, they arevery hard to parameterize
in terms of content complexity. It could be advantageous to explore the performance
response of particular graphics content while, for instance, varying the complexity and
other properties of the drawn meshes. Currently, such benchmarks are being authored
by hand, creating a possible disconnection between real applications and the bench-
mark content.

95

8. CONCLUSION

The aim of this thesis was to define a practical process and supporting toolset for rec-
ognizing, analyzing and solving quality issues encountered in mobile vector graphics
applications. Our main focus was on OpenGL ES 1.1 and OpenVG 1.0 applications
running on Symbian OS smartphones. We began with an overviewof the types of
quality problems common in this domain and devised a classification system based on
the dominant cause behind the issue:

1. Dominant cause in API usage patterns

2. Dominant cause in graphics content complexity

3. Dominant cause in graphics engine

4. Dominant cause unrelated to graphics

We then examined each class of problems in detail, focusing on what information
was required to recognize issues belonging to that class. Based on this analysis, we
concluded that the classification process required in-depth knowledge of the graphi-
cal behavior of the examined application. Acquiring such information was deemed
impractical without a comprehensive supporting toolset. Existing graphics debugging
solutions were found to be targeted to powerful desktop workstations or single render-
ing APIs; our aspiration was to build a system that was suitable for embedded systems
and multiple graphics APIs.

This lack of a suitable set of tools led us to design the Graphics Quality Analysis
Toolkit. The toolkit comprised three main components: a Tracer for capturing the
graphics commands executed by an application; a Trace Player for repeating the cap-
tured graphics commands, and a Trace Analyzer for extracting content features and
other data from the trace file with the aid of custom instrumented graphics engines.
This design enabled the workflow of capturing the graphics ofa mobile application
to a trace file and extracting the needed content features forclassification in a more
powerful workstation environment.

Our approach differed from previous work in that we focused exclusively on offline
analysis instead of live debugging. This was in part due to the limitations of mobile
application platforms, but a stronger motivation was the repeatability of static trace
files; once a trace is captured, it can be freely processed independently of the original
application. This enables a number of key operations for graphics engineering work,
such as seamless transferring of graphics content from one system to another regard-
less of the involved operating systems, graphics engines and applications. We also
demonstrated the possibility to apply arbitrary transformations to the stored graphics
commands, such as the conversion into C source code that reproduces the graphics of
the original application. Our system also supports extracting subsequences of trace
files, which enables more focused analysis of complex graphics applications.

Finally, we demonstrated the usage of our toolkit implementation through a number
of facilitated use cases. The use cases were modeled after actual quality issue inci-
dents encountered in previous graphics system integrationwork. We therefore believe
that they accurately represent the process of analyzing real-world quality issues. In

96

the use cases, the toolkit was used to find the reason behind poor application perfor-
mance, inspect a visual error in an application, perform application quality analysis,
benchmark a number of graphics engines with traced application content and calculate
detailed content features the graphics content of an application. The Graphics Qual-
ity Analysis Toolkit enabled a practical and efficient process for performing each of
these use cases, leading us to conclude that the tracer paradigm is a viable approach
for analyzing quality issues in mobile vector graphics applications.

97

9. REFERENCES

[1] Microsoft (2007), DirectX Resource Center.http://msdn.microsoft.com/

directx/.

[2] Gold Standard Group (2007), OpenGL — The Industry Standard for High Per-
formance Graphics.http://www.opengl.org.

[3] Pulli K., Roimela K., Aarnio T. & Vaarala J. (Nov.-Dec. 2005) Designing graph-
ics programming interfaces for mobile devices. Computer Graphics and Applica-
tions, IEEE 25, pp. 66–75.

[4] Khronos Group (2007), OpenGL ES — The Standard for Embedded Accelerated
3D Graphics.http://www.khronos.org/opengles/.

[5] Khronos Group (2007), OpenVG — The Standard for Vector Graphics Acceler-
ation.http://www.khronos.org/opengvg/.

[6] Khronos Group (2007), The Khronos Group: Open Standards, Royalty Free, Dy-
namic Media Technologies.http://www.khronos.org.

[7] Symbian Limited (2007), Fast Facts.http://www.symbian.com/about/
fastfacts/fastfacts.html.

[8] Sales J. (2005) Symbian OS Internals. John Wiley & Songs Ltd, West Sussex,
England, 918 p.

[9] Symbian Limited (2007), Symbian OS v9.5 Product Sheet.http://www.

symbian.com/symbianos/releases/v95/productsheet.html.

[10] Nokia (2007), S60 Platform.http://www.forum.nokia.com/main/
platforms/s60/.

[11] Digia (2003) Programming for the Series 60 Platform andSymbian OS. John
Wiley & Songs Ltd, West Sussex, England, 521 p.

[12] Nokia (2004), Introduction to the S60 Scalable UI.http://www.forum.
nokia.com.

[13] Nokia (2007), Device specifications.http://forum.nokia.com/devices.

[14] Atlantic Book Publishing (1987) Webster’s Dictionary.Book Essentials Publica-
tions, Larchmont, New York, 10538.

[15] Steinmetz R. & Engler C. (2001) Human perception of media synchronization ,
pp. 737–750.

[16] Ghinea G. & Thomas J.P. (1998) QoS impact on user perception and understand-
ing of multimedia video clips. In: MULTIMEDIA ’98: Proceedings of the sixth
ACM international conference on Multimedia, ACM Press, New York, NY, USA,
pp. 49–54.

98

[17] MacKenzie I.S. & Ware C. (1993) Lag as a determinant of human performance
in interactive systems. In: CHI ’93: Proceedings of the SIGCHIconference on
Human factors in computing systems, ACM Press, New York, NY, USA, pp.
488–493.

[18] Bederson B.B. & Boltman A. (1999) Does animation help users build mental
maps of spatial information? In: INFOVIS ’99: Proceedings of the 1999 IEEE
Symposium on Information Visualization, IEEE Computer Society, Washington,
DC, USA, p. 28.

[19] Symbian Limited (2005), TAT targets Symbian OS smartphone market.http:
//www.symbian.com/news/cn/2005/cn20052591.html.

[20] Gilbertson S. (2007), Kiss boring interfaces goodbye with Apple’s new an-
imated OS.http://www.wired.com/software/coolapps/news/2007/
06/core_anim.

[21] Bryson S.T. (1993) Effects of lag and frame rate on various tracking tasks. In:
J.O. Merritt & S.S. Fisher (eds.) Proc. SPIE Vol. 1915, p. 155-166, Stereoscopic
Displays and Applications IV, John O. Merritt; Scott S. Fisher; Eds., Presented at
the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol.
1915, pp. 155–166.

[22] Dunwoody J.C. & Linton M.A. (1990) Tracing interactive 3D graphics programs.
In: I3D ’90: Proceedings of the 1990 Symposium on Interactive 3D graphics,
ACM Press, New York, NY, USA, pp. 155–163.

[23] Humphreys G., Houston M., Ng Y., Frank R., Ahern S., Kirchner P.
& Klosowski J. (2002), Chromium: A stream processing framework for
interactive graphics on clusters. URL:http://citeseer.ist.psu.edu/
humphreys02chromium.html.

[24] Sheaffer J.W., Luebke D. & Skadron K. (2004) A flexible simulation frame-
work for graphics architectures. In: HWWS ’04: Proceedings ofthe ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, ACM Press, New
York, NY, USA, pp. 85–94.

[25] Shreiner D., Woo M., Neider J. & Davis T. (2004) OpenGL Programming Guide.
Addison-Wesley, fourth ed.

[26] Buck I., Humphreys G. & Hanrahan P. (2000) Tracking graphics state for net-
worked rendering. In: HWWS ’00: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS workshop on Graphics hardware, ACM Press, New York,NY,
USA, pp. 87–95.

[27] NVIDIA (2007), NVIDIA PerfHUD version 5.1. http://developer.
nvidia.com/perfhud.

[28] Graphic Remedy (2007), GDEBugger - OpenGL and OpenGL ES Debugger and
Profiler.http://www.gremedy.com.

99

[29] Trebilco D. (2005), GLIntercept.http://glintercept.nutty.org.

[30] Duca N., Niski K., Bilodeau J., Bolitho M., Chen Y. & Cohen J. (2005) A re-
lational debugging engine for the graphics pipeline. In: Proceedings of ACM
SIGGRAPH 2005, ACM Press, New York, NY, USA, pp. 453–463.

[31] Wimmer M. & Wonka P. (2003) Rendering time estimation forreal-time render-
ing. In: EGRW ’03: Proceedings of the 14th Eurographics workshop on Render-
ing, Eurographics Association, Aire-la-Ville, Switzerland, pp. 118–129.

[32] Chiueh T. & Lin W. (1997) Characterization of static 3D graphics workloads.
In: S. Molnar & B.O. Schneider (eds.) 1997 SIGGRAPH / Eurographics Work-
shop on Graphics Hardware, ACM Press, New York City, NY, pp. 17–24. URL:
citeseer.ist.psu.edu/707566.html.

[33] Mitra T. & Chiueh T. (1999) Dynamic 3D graphics workload characterization
and the architectural implications. In: MICRO 32: Proceedings of the 32nd an-
nual ACM/IEEE international symposium on Microarchitecture, IEEE Computer
Society, Washington, DC, USA, pp. 62–71.

[34] Smith T. (1995) An introduction to PHIGS. Tech. rep., University of Arkansas.

[35] Khronos Group (2007), OpenGL Overview.http://www.opengl.org/
about/overview.

[36] Pulli K., Aarnio T., Miettinen V., Roimela K. & Vaarala J.(2007) Mobile 3D
Graphics: with OpenGL ES and M3G (The Morgan Kaufmann Seriesin Com-
puter Graphics). Morgan Kaufmann, 500 p.

[37] Perez A. (2000), Computer Graphics I, Course Notes, Direct3D and Multi
Texturing. http://www.cs.cmu.edu/afs/cs/academic/class/15462/

web.00s/notes/direct3d.pdf.

[38] Blythe D. (2006) The Direct3D 10 system. ACM Trans. Graph.25, pp. 724–734.

[39] Astle D. (2006), Advanced Visual Effects with OpenGL.http://www.
gamedev.net/columns/events/gdc2006/article.asp?id=233.

[40] Microsoft Corporation (2007), Introduction to Direct3D Mobile. http://

msdn2.microsoft.com/en-us/library/ms172504.aspx.

[41] Nokia (2004), OpenGL ES API And 3D Graphics On Symbian OS. http://
forum.nokia.com.

[42] Adobe Systems Incorporated (1999) PostScript Language Reference. Addison-
Wesley Publishing Company, third ed., 912 p.

[43] Microsoft Corporation (2007), Windows GDI.http://msdn2.microsoft.
com/en-us/library/ms536795.aspx.

[44] Tronche C. (2005), The Xlib Manual.http://www.tronche.com/gui/x/
xlib.

100

[45] Harrison R. (2003) Symbian OS C++ for Mobile Phones. John Wiley & Songs
Ltd, West Sussex, England.

[46] Microsoft Corporation (2007), WPF Graphics, Animation and Media Overview.
http://msdn2.microsoft.com/en-us/library/ms742562.aspx.

[47] Worth C. & Packard K. (2003) Cairo: Cross-device Rendering for Vector Graph-
ics. In: Proceedings of the 2003 Ottawa Linux Symposium.

[48] Khronos Group (2007) OpenVG ES 1.0.1 Specification.

[49] Khronos Group (2007) OpenGL ES 1.1.10 Full Specification.

[50] Khronos Group (2006) EGL 1.3 Specification.

[51] Henning M. (2007) API design matters. ACM Queue 5, pp. 25–36.

[52] Symbian Limited (2006), OpenGL ES porting guide for Symbian OS.http:
//developer.symbian.com/main/downloads/papers/OpenGL.pdf.

[53] Free Software Foundation (2007), The GNU Project Debugger.http://www.
gnu.org/software/gdb.

[54] Nokia (2007), Best Practices for HW-Accelerated Graphics Optimiza-
tion. http://www.forum.nokia.com/info/sw.nokia.com/id/

34a99a06-1d7c-4cdb-bd3b-be8cc6a28c17/Best_Practices_for_

HW_Accelerated_Graphics_Optimization.html.

[55] Aherne F., Thacker N. & Rockett P. (1997) The Bhattacharyya Metric as an Ab-
solute Similarity Measure for Frequency Coded Data. Kybernetica 32, pp. 1–7.

[56] Khronos Group (2007) OpenGL ES 2.0 Specification.

